

MONITORING YEAR 7 ANNUAL REPORT FINAL

DEVIL'S RACETRACK MITIGATION SITE

Johnston County, NC NCDEQ Contract 003989 DMS Project Number 95021 USACE Action ID Number 2012-00810 NCDWR Project Number 12-0747

Data Collection Period: January - November 2020 Draft Submission Date: December 21, 2020 Final Submission Date: February 17, 2021

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

Jason Lorch

jlorch@wildlandseng.com Phone: 919.851.9986 Mitigation Project Name Devils Racetrack Mitigation Site

DMS ID 95021
River Basin Neuse
Cataloging Unit 03020201
County Johnston

USACE Action ID 2012-00810

DWR Permit 2012-0747

Date Project Instituted 7/27/2011

Date Prepared 7/14/2020

Stream/Wet. Service Area Neuse 03020201

Voil June 9/21/2020

Signature & Date of Official Approving Credit Release

- 1 For NCDMS, no credits are released during the first milestone
- 2 For NCDMS projects, the initial credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the IRT by posting it to the DMS portal, provided the following have been met:
 - 1) Approved of Final Mitigation Plan
 - 2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property.
 - 3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan.
 - 4) Receipt of necessary DA permit authorization or written DA approval for projects where DA permit issuance is not required.
- 3 A 10% reserve of credits is to be held back until the bankfull event performance standard has been met.

Credit Release Milestone		Warm Stream Credits						
Project Credits	Scheduled Releases %	Proposed Releases %	Proposed Released #	Not Approved # Releases	Approved Credits	Anticipated Release Year	Actual Release Date	
1 - Site Establishment	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
2 - Year 0 / As-Built	30.00%	30.00%	5,514.080	0.000	5,514.080	2014	6/5/2014	
3 - Year 1 Monitoring	10.00%	10.00%	1,838.027	0.000	1,838.027	2015	4/23/2015	
4 - Year 2 Monitoring	10.00%	10.00%	1,838.027	0.000	1,838.027	2016	4/25/2016	
5 - Year 3 Monitoring	10.00%	10.00%	1,838.027	479.969	1,358.107	2017	10/20/2017	
6 - Year 4 Monitoring	5.00%	5.00%	1,275.070	1,275.057	0.000	2018	8/31/2018	
7 - Year 5 Monitoring	10.00%	10.00%	3,096.567	0.000	3,096.567	2019	5/13/2019	
8 - Year 6 Monitoring	5.00%	5.00%	910.755	0.000	910.755	2020	5/18/2020	
9 - Year 7 Monitoring	10.00%					2021		
Stream Bankfull Standard	10.00%	10.00%	1,838.027	0.000	1,838.027	2016	4/25/2016	
			Totals		16,393.590			

Total Gross Credits	18,215.100
Total Unrealized Credits to Date	0.000
Total Released Credits to Date	16,393.590
Total Percentage Released	90.00%
Remaining Unreleased Credits	1,821.510

Credit Release Milestone		Riparian Credits							
Project Credits	Scheduled Releases %	Proposed Releases %	Proposed Released #	Not Approved # Releases	Approved Credits	Anticipated Release Year	Actual Release Date		
1 - Site Establishment	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
2 - Year 0 / As-Built	30.00%	30.00%	18.630	0.000	18.630	2014	6/5/2014		
3 - Year 1 Monitoring	10.00%	10.00%	6.210	0.000	6.210	2015	4/23/2015		
4 - Year 2 Monitoring	10.00%	10.00%	6.210	0.000	6.210	2016	4/25/2016		
5 - Year 3 Monitoring	15.00%	15.00%	9.315	3.105	6.210	2017	10/20/2017		
6 - Year 4 Monitoring	5.00%	5.00%	3.690	3.690	0.000	2018	8/31/2018		
7 - Year 5 Monitoring	15.00%	15.00%	12.465	2.955	9.510	2019	5/13/2019		
8 - Year 6 Monitoring	5.00%	5.00%	5.895	0.000	5.895	2020	5/18/2020		
9 - Year 7 Monitoring	10.00%					2021			
Stream Bankfull Standard	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
			Totals		52.665				

116

Mitigation Project Name Devils Racetrack Mitigation Site USACE Action ID 2012-00810 **DMS ID** 95021 **DWR Permit** 2012-0747 **River Basin** Neuse **Date Project Instituted** 7/27/2011 03020201 7/14/2020 **Cataloging Unit Date Prepared** Stream/Wet. Service Area Neuse 03020201 County **Johnston**

Total Gross Credits	62.100
Total Unrealized Credits to Date	3.600
Total Released Credits to Date	52.665
Total Percentage Released	84.81%
Remaining Unreleased Credits	5.835

Notes

10/20/2017: Adjustment required due to IRT concerns on how the as-built credits were calculated.

4/2/2019: Adjustment required due to permanent reduction of anticipated wetland credits.

5/13/2019: Based on site visit, IRT authorized the release of all stream and wetland credits on hold from Years 3 and 4 monitoring. Year 5 stream credits were approved for release but 2.95 of the wetland credits would remain on hold.

Contingencies (if any)

Project Quantities

Mitigation Type	Restoration Type	Physical Quantity
Warm Stream	Restoration	18,282.000
Warm Stream	Enhancement I	75.000
Warm Stream	Enhancement II	154.000
Riparian	Restoration	63.300

Debits							Stream Restoration Credits	Riparian Restoration
Beginning Balance (r	nitigation cred	its)					18,215.100	62.100
Released Credits							16,393.590	52.665
Unrealized Credits							0.000	3.600
Owning Program	Req. Id	TIP#	Project Name	USACE Permit #	DWR Permit #	DCM Permit #		
NCDOT Stream & Wetland ILF Program	REQ-004844		SR 2516 - Division 5	2007-02814-292			15.000	
NCDOT Stream & Wetland ILF Program	REQ-007578	R-3825B	R-3825B - NC 42 Improvements	2011-01695	2018-0904		73.800	
NCDOT Stream & Wetland ILF Program	REQ-007592		SR 1379 - Pipe - Division 5	2018-01592	2018-0964		69.000	
NCDOT Stream & Wetland ILF Program	REQ-007594		SR 2329 - Bridge 186 - Division 5	2016-01618			82.000	
NCDOT Stream & Wetland ILF Program	REQ-007836	W-5600	US 70 Improvements - Division 4	2014-01728	2019-0188		1,640.000	

117

Mitigation Project Name Devils Racetrack Mitigation Site

DMS ID 95021
River Basin Neuse
Cataloging Unit 03020201
County Johnston

USACE Action ID 2012-00810

DWR Permit 2012-0747

Date Project Instituted 7/27/2011

Date Prepared 7/14/2020

Stream/Wet. Service Area Neuse 03020201

Remaining balance (Unreleased cr	edits)				1,821.510	5.835
Remaining Available	balance (Rele	ased credits)				1,530.000	10.130
Total Credits Debited	d					14,863.590	44.700
NCDOT Stream & Wetland ILF Program	REQ-008420	R-2721B	R-2721B - NC 540 from East of SR 1389 to East of US 401	2009-02240	2018-1249		1.790
NCDOT Stream & Wetland ILF Program	REQ-008419	R-2828	R-2828 - NC 540 from East of US 401 to I-40 Interchange	2009-02240	2018-1249		18.630
NCDOT Stream & Wetland ILF Program	REQ-008296	R-2721B	R-2721B - NC 540 from East of SR 1389 to East of US 401	2009-02240	2018-1249		12.690
NCDOT Stream & Wetland ILF Program	REQ-008293	R-2721A	R-2721A - NC 540 - West of NC 55 to East of SR 1389	2009-02240	2018-1249		5.710
NCDOT Stream & Wetland ILF Program	REQ-008188	I-5111 / I- 4739	I-5111 / I-4739 - I-40 Widening (Wake & Johnston Counties)	2009-00556	2019-0593		1.010
Unrealized Credits						0.000	3.600
Released Credits						16,393.590	52.665
Beginning Balance (mitigation cred	dits)				18,215.100	62.100
Debits	Stream Restoration Credits	Riparian Restoration					
NCDOT Stream & Wetland ILF Program	REQ-007837	W-5600	US 70 Improvements - Division 4	2014-01728	2019-0188		4.480
NCDOT Stream & Wetland ILF Program	REQ-007756	R-2721B UTILTY	R-2721B UTILITY - NC 540 from East of SR 1389 to East of US 401	2009-02240	2018-1192		0.060
NCDOT Stream & Wetland ILF Program	REQ-007741	B-4840	B-4840 Bridge 264 on SR 1117 (Thunder Swamp Road)	2018-02257			0.330
NCDOT Stream & Wetland ILF Program	REQ-008187	I-5111 / I- 4739	I-5111 / I-4739 - I-40 Widening (Wake & Johnston Counties)	2009-00556	2019-0593	10,322.790	
NCDOT Stream & Wetland ILF Program	REQ-008185	U-2719	I-440 / US 1 Widening (Raleigh Beltline)	2012-01414	2019-0992	1,670.000	
NCDOT Stream & Wetland ILF Program	REQ-007860	B-4962	B-4962 - Bridge 46 on US 70 Bypass	2018-02345		534.000	
NCDOT Stream & Wetland ILF Program	REQ-007836	W-5600	US 70 Improvements - Division 4	2014-01728	2019-0188	457.000	

EXECUTIVE SUMMARY

Wildlands Engineering (Wildlands) completed a full-delivery project for the North Carolina Division of Mitigation Services (DMS) to restore and enhance a total of 18,748 linear feet (LF) of stream and restore 59.70 acres (ac) of wetlands in Johnston County, North Carolina. The project streams consist of five unnamed tributaries (UTs) to the Neuse River. The largest of these streams, Devil's Racetrack Creek (East and West), drains directly to the Neuse River. The other four streams are small headwater tributaries to Devil's Racetrack Creek (Southwest Branch, Middle Branch, Southeast Branch, and North Branch). The project proposes to provide 18,215 stream mitigation units (SMU's) and 58.50 wetland mitigation units (WMU's). At the downstream limits of the project, the drainage area is 831 acres (1.30 square miles).

The Devil's Racetrack Mitigation Site, hereafter referred to as the Site, is located in eastern Johnston County along Devil's Racetrack Road just east of its intersection with U.S. Highway 701 and approximately one mile east of Interstate 95 (Figure 1). The Site is located in the western portion of the Inner Coastal Plain Physiographic Province (USGS, 1998) within the North Carolina Division of Water Resources (NCDWR) subbasin 03-04-02 of the Neuse River Basin (United States Geological Survey (USGS) Hydrologic Unit 03020201140010).

Prior to construction activities, the streams had been relocated and channelized and the surrounding wetland complex had been drained for agricultural purposes. The primary objectives of the project were to re-establish wetland hydrology, restore a Coastal Plain Small Stream Swamp wetland community, restore a Coastal Plain stream system to promote hydrologic connectivity with the floodplains and wetlands, stabilize stream banks, promote instream habitat and aeration, restore riparian buffers, and further improve water quality through removing existing agricultural practices. Figures 2a and 2b, and Table 1 present the restoration and enhancement design for the Site.

The following project goals were established to address the effects listed above from watershed and project site stressors:

- Restore a large wetland complex to a naturally occurring community to improve riparian habitat and water quality;
- Restore a network of badly degraded stream channels, including multiple headwater streams, to create aquatic habitat and further improve water quality to receiving waters; and
- Restore riparian buffers along stream corridors for additional habitat and water quality benefits.

Stream and wetland restoration and enhancement construction efforts were completed in February 2014. Baseline as-built monitoring activities (MY0) were completed between January and February 2014. A conservation easement is in place on 96.065 acres of restored wetland and riparian stream corridors to protect them in perpetuity.

Monitoring Year 7 (MY7) assessment and site visits were completed between the months of January and November 2020 to assess the conditions of the project. Overall, the Site has met the required vegetation, hydrology, and stream success criteria for MY7. The overall MY7 average planted stem density for the Site is 552 planted stems per acre, which is greater than the year seven density requirement of 210 stems per acre. Individually, 50 of the 51 vegetation plots meet the vegetation success criteria. The average stem height per plot is 12.7 feet, exceeding the ten foot height requirement. All restored and enhanced streams are stable and functioning as designed and have had multiple bankfull events each monitoring year. Southeast Branch, Southwest Branch, and Middle Branch all had pressure transducers installed to monitor stream flow. All three stream gages exceeded 30 consecutive days of flow for MY7. Of the 37 groundwater

monitoring wells on the Site, 32 met the success criteria (water table with 12 inches of the ground surface for 8.5% of the growing season consecutively), and five did not meet criteria. Out of the five groundwater wells that didn't meet success criteria for MY7, two were within wetland areas determined to be at risk. No easement encroachments were observed during MY7. The USDA removed beaver from the Site three different times during MY7. Pine trees were removed on parts of the Site and soil amendments were added to the east side of the project. The vegetation on the east side of Devil's Racetrack has continued to drastically improve.

DEVIL'S RACETRACK MITIGATION SITE

Monitoring Year 7 Annual Report

Section 1: PROJECT OVERVIEW......1-1

Project Goals and Objectives1-1

TABLE OF CONTE	NTS	S
-----------------------	------------	---

1.2 Mor	nitoring Year 7 Data Assessment1-2
1.2.1	Vegetative Assessment1-2
1.2.2	Vegetation Areas of Concern1-3
1.2.3	Stream Assessment1-3
1.2.4	Stream Areas of Concern1-4
1.2.5	Hydrology Assessment1-4
1.2.6	Wetland Assessment1-4
1.2.7	Maintenance Plan1-6
	nitoring Year 7 Summary1-6
	ETHODOLOGY2-1
Section 3: RE	FERENCES
APPENDICES	
Appendix 1	General Tables and Figures
Figure 1	Project Vicinity Map
Figure 2a-b	Project Component/Asset Map
Table 1	Project Components and Mitigation Credits
Table 1A	Project Mitigation Credit History
Table 2	Project Activity and Reporting History
Table 3	Project Contacts Table
Table 4	Project Information and Attributes
Appendix 2	Visual Assessment Data
Figure 3.0-3.2	Integrated Current Condition Plan View
Table 5a-f	Visual Stream Morphology Stability Assessment Table
Table 6	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs
	Overview Photograph Comparison (Devil's Racetrack East)
Appendix 3	Vegetation Plot Data
Table 7	Vegetation Plot Criteria Attainment
Table 7a	Vegetation Plot Criteria Attainment: Average Height By Plot
Table 8	CVS Vegetation Table - Metadata
Table 9	Planted and Total Stem Counts
Appendix 4	Morphological Summary Data and Plots
Table 10a-f	Baseline Stream Data Summary
Table 11a-f	Morphology and Hydraulic Summary (Dimensional Parameters – Cross Section)
Table 12a-f	Monitoring Data – Stream Reach Data Summary Cross Section Plots

Appendix 5 Hydrology Summary Data and Plots

Table 13 Verification of Bankfull Events

Table 14 In-Stream Flow Gage Attainment Summary

Recorded In-Stream Flow Events

Table 15 Wetland Gage Attainment Summary

Groundwater Gage Plots Soil Temperature Probe Plots

Monthly Rainfall Data

30 Day Cumulative Rainfall Total

Pre and Post Construction Groundwater Gage Comparison Plots

Detailed Hydric Soil Investigation

Section 1: PROJECT OVERVIEW

The Devil's Racetrack Mitigation Site, hereafter referred to as the Site, is located in eastern Johnston County within the Neuse River Basin (USGS Hydrologic Unit 03020201) near the town of Four Oaks, North Carolina. The Site is located along Devil's Racetrack Road just east of its intersection with U.S. Highway 701 and approximately one mile east of Interstate 95. The Site is in the western portion of the Inner Coastal Plain Physiographic Province (USGS, 1998). The project watershed consists primarily of agricultural lands and forest. The only significant development in the watershed is a campground adjacent to Devil's Racetrack Creek on the western portion of the project site, a middle school in the upper portion of the watershed, a low-density subdivision with single family homes, and a small section of I-95. The drainage area for the project site is 831 acres (1.30 square miles) at the lower end of Devil's Racetrack Creek (East).

The project stream reaches include Devil's Racetrack Creek (East and West), Southwest Branch, Middle Branch, Southeast Branch, and North Branch. Mitigation work within the Site included restoration and enhancement I and II of 18,748 linear feet of perennial and intermittent stream channel and restoration of 59.7 acres (ac) of riparian wetlands. The stream and wetland areas were also planted with native vegetation to improve habitat and protect water quality. The final mitigation plan was submitted and accepted by the DMS in January of 2013. Construction activities were completed by Land Mechanic Designs, Inc. (East Side) and Fluvial Solutions (West Side) in February 2014. Planting and seeding activities were completed by Bruton Natural Systems, Inc. in February 2014. Baseline monitoring (MY0) was conducted between December 2013 and February 2014. Annual monitoring will be conducted for seven years with the close-out anticipated to commence in 2021 given the success criteria are met. Appendix 1 provides more detailed project activity, history, contact information, and watershed/site background information for this project.

A conservation easement has been recorded and is in place along the stream and wetland riparian corridors to protect them in perpetuity; 96.065 ac (Deed Book 4221, Page 419-433) within two tracts owned by Nell Howell Revocable Trust. The project provides 18,215 stream mitigation units (SMU's) and 58.50 wetland mitigation units (WMU's). Directions and a map of the Site are provided in Figure 1 and project components are illustrated in Figures 2a and 2b.

1.1 Project Goals and Objectives

Prior to construction activities, the streams had been relocated and channelized with the surrounding wetland complex drained for agricultural purposes. Stream valleys and other low areas were filled to raise wet areas and level the fields. At the same time the streams were straightened, and riparian vegetation was also removed. The project area west of Devil's Racetrack Road was used for row crop agriculture and the eastern portion was used for timber production.

The channelization of streams on the Site resulted in severely over-enlarged channels that were extremely deep in many locations. The alterations of the Site to promote farming practices resulted in complete elimination of the ecological function of this small stream/wetland complex. Specifically, functional losses at the Site include degraded aquatic habitat, altered hydrology (related to loss of floodplain connection and lowered water table), and reduction of amount and quality of riparian wetland habitats and related water quality benefits. Ongoing bank erosion was also occurring at some locations due to high, overly steep banks and lack of bank vegetation. Table 4 in Appendix 1 and Tables 10a through 10f in Appendix 4 present the pre-restoration conditions in detail.

The Site was designed to meet the over-arching goals as described in the Mitigation Plan (Wildlands, 2013). The project is intended to provide numerous ecological benefits within the Neuse River Basin. While many of these benefits are limited to the Devil's Racetrack Creek Site project area, others, such as pollutant removal and improved aquatic and terrestrial habitat, have more far-reaching effects. The following project specific goals established in the Mitigation Plan include:

- Restore a large wetland complex to a naturally occurring community to improve riparian habitat and water quality;
- Restore a network of badly degraded stream channels, including multiple headwater streams, to create aquatic habitat and further improve water quality to receiving waters; and
- Restore riparian buffers along stream corridors for additional habitat and water quality benefits.

Secondary project goals established in the Mitigation Plan were to restore fish passage from the Neuse River to Devil's Racetrack Creek. This is a secondary goal because success will not be measured during monitoring.

The primary project goals were addressed through the following project objectives:

- Promote wetland hydrology by raising channelized stream beds and filling drainage ditches;
- Plant wetland areas with native tree species to restore a Coastal Plain Small Stream Swamp Blackwater Subtype community;
- Reconstruct stream channels to have the appropriate slope, planform, and cross-sectional geometry for the region of the Coastal Plain in which the project is located;
- Size reconstructed stream channels to flood floodplains and wetlands frequently;
- Stabilize stream banks using bioengineering, natural channel design techniques, and grading to reduce bank angles and bank height;
- Install in-stream structures and woody debris to promote aeration of water, create habitat, and influence the creation of bed forms commonly found in sand bed channels;
- Restore riparian buffer areas with native tree species to stabilize channels, filter flood flows and runoff, and supplement wetland plantings; and
- Remove project area from agricultural production further improving water quality.

The design streams and wetlands were restored to the appropriate type based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions and trajectory. The Site was developed to restore a large stream/wetland complex directly adjacent to the Neuse River to a naturally occurring community to create riparian and wetland habitat and improve water quality. Other intentions of the Site were to create stable habitats, improve riparian buffers, and restore the natural migration patterns for anadromous and other fish for spawning.

1.2 Monitoring Year 7 Data Assessment

Annual monitoring and quarterly site visits were conducted during MY7 to assess the condition of the project. The stream and wetland mitigation success criteria for the Site follow the approved success criteria presented in the Mitigation Plan (Wildlands, 2013).

1.2.1 Vegetative Assessment

A total of 51 10-meter by 10-meter vegetation plots were established within the Site during baseline monitoring. The final vegetation success criteria are the survival of 210 planted stems per acre averaging 10 feet in height at the end of the seven year monitoring period (MY7).

The MY7 vegetative survey was completed in August 2020. The vegetation monitoring data suggests a site wide average planted stem density of 552 stems per acre which exceeds the MY7 requirement of 210 stems per acre but is approximately 21% less than the stem density recorded in MY0. Individual plot data suggests planted stem density ranges from 162 to 769 planted stems per acre. When including volunteer stems, the site wide average number of stems per acre is 787. Fifty of the 51 vegetation plots met success criteria for MY7 (Table 9, Appendix 3). Vegetation Plot 49 averaged 162 planted stems per acre and, 202 stems per acre when volunteer stems are included. The average planted stem height per plot is 12.7 feet. Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern

Even though vegetation plot 49 does not meet the final success criteria, when including a cherybark oak (*Quercus pagoda*) volunteer this plot has a stem density of 202 stems per acre which is close to the final success criteria of 210 stems per acre. With this being the only vegetation plot on the Site below the final success criteria and it being short by one stem, no remedial actions are proposed in this area at this time.

The restoration area east of Devil's Racetrack Road continued to receive treatment to improve soil quality and herbaceous cover. Fertilizer and pelletized lime were applied to the base of trees across the 22.7 acre area during MY7. Additionally, the area was seeded with a native seed mix and live stakes were planted along Devil's Racetrack (East). Herbaceous cover and tree densities are sufficient; however, tree vigor is lower than expected for monitoring year 7. This area has drastically improved and will continue to be monitored and remedial actions will be taken as necessary.

Loblolly pine (*Pinus taeda*) has continued to volunteer across the site. In January of 2020, pines were cut on 8.76 acres of the Site to keep them from competing with desirable vegetation. Loblolly pine will continue to be monitored and treated as necessary until project close out.

1.2.3 Stream Assessment

Morphological surveys for MY7 were conducted in March and April 2020. All streams within the Site are stable and met success criteria for MY7. In general, cross sections for all streams showed little to no change in bankfull area, maximum depth ratio, or width-to-depth ratio. Cross section surveys show that the bank height ratios remain at or very near 1.0. Entrenchment ratios vary slightly from year to year due to minor changes in bankfull widths. Small adjustments in width occur due to vegetation, sediment deposition, and many other factors. These minor changes do not indicate channel instability. Surveyed riffle cross sections fell within the parameters defined for channels of the appropriate Rosgen stream type.

Cross section 8 on Devil's Racetrack (West) has maintained a consistent bankfull width but has increased in depth and area. This is due to the location of the cross section within the shallow. The shallow was built with logs buried perpendicular to the stream banks at the stream bed elevation to provide grade control. These logs create micro pools within the shallow. Cross section 8 was placed downstream of a log in a micro pool. Cross section 8 is representative of micro pools and is stable and performing as expected, even though there is an increase in depth and area.

Longitudinal profile surveys are not required on the project unless visual inspection indicates reach wide vertical stability concerns. Refer to Appendix 2 for the visual stability assessment table, the CCPV map, and reference photographs. Refer to Appendix 4 for the morphological data and plots.

1.2.4 Stream Areas of Concern

During MY7 several beaver dams were observed along Devil's Racetrack (West) and one on North Branch. The USDA removed beaver from the Site in February, May, and December 2020. Several beavers were trapped each time the USDA was at the Site. The beaver dams did not cause any issues with stream channel or bank stability so remedial actions were not necessary. The Site will continue to be monitored for future beaver activity.

During MY6 sediment was removed from the upper 100 feet of Southeast Branch which had aggraded due to sediment loss from the upstream agricultural field. During MY7 very little sediment was observed in this section of Southeast Branch and no actions were necessary as the stream naturally moved any sediment that washed in from the floodplain.

1.2.5 Hydrology Assessment

The final hydrology criteria are two or more bankfull events must have occurred during separate years within the restoration reaches. During the MY7 multiple bankfull events were recorded on all the streams utilizing crest gages that were equipped with pressure transducers. All streams on the Site had multiple bankfull events during MY1, MY2, MY3, MY4, MY5, and MY6. Therefore, the Site has met the required bankfull flow success criterion.

Flow Gauges were installed on Southwest Branch, Southeast Branch, and Middle Branch to measure stream flow. These pressure transducers were installed to show that the streams have adequate flow for a portion of the year and are not ephemeral ditches. Continuous flow must be documented for at least 30 consecutive days during normal precipitation circumstances on these streams. Stream flow must be documented to occur intermittently in all months other than July through September. Southwest and Middle Branch showed consistent flow throughout MY7. Southeast Branch maintained flow for 118 consecutive days, from the beginning of the year until the end of April. All three streams have met the flow success criterion for MY7. All three streams have easily exceeded stream flow criteria in all previous monitoring years except Southeast Branch during MY2 when the gage malfunctioned most of the year. Refer to Appendix 5 for hydrologic data.

1.2.6 Wetland Assessment

Thirty-four groundwater monitoring gages were established during the baseline monitoring, four additional gages were added during MY2, and three gages were added during MY5. Groundwater gage 34 was removed during MY6 due to poor performance. The area around gage 34 is already categorized as wetland credits at risk and likely won't generate wetland credits. Groundwater gages 8 and 32 were placed outside of wetland boundaries to capture the extent of the wetlands and were removed during MY5. Groundwater gage 10 performed poorly and was removed during MY4. The wetland area around groundwater gage 10 was adjusted during MY4 as well. All the gages were installed at appropriate locations so that the data collected will provide an indication of groundwater levels throughout the Site. To provide data for the determination of the growing season, three soil temperature probes (2 on the west side and 1 on the east side) have been installed at a depth of twelve inches. A barotroll logger (to measure barometric pressure used in the calculations of groundwater levels with well transducer data) was also installed on the Site. All monitoring gages were downloaded and maintained on an as needed basis. The success criterion for wetland hydrology is there must be a free groundwater surface within 12 inches of the ground surface for a consecutive 8.5 percent of the growing season, during normal precipitation conditions. During MY1 NRCS WETS Data was used to determine the growing season for the Site. After discussions with the United States Army Corps of Engineers (USACE), it was agreed to use onsite soil temperature data to determine the beginning of the growing season and use NRCS WETS data to determine the end of the growing season. During MY7 the beginning of the growing season was extended by 20 days from the NRCS WETS start date of March 21 to March 1 based on soil temperatures staying above 41 degrees Fahrenheit at 12 inches below the ground surface. During a site visit on March 4th, black cherry (*Prunus serotina*) and flowering dogwood (*Cornus florida*) were observed to have leaves. These leaves appeared to be present for several days and were likely present before March 1st.

The USACE requested pre-construction groundwater well data be overlaid on hydrographs with the current monitoring year groundwater well data to see how groundwater levels are recharging after rain events on the Site. Wildlands overlaid the pre-construction groundwater well data with the closest monitoring groundwater well data and rain data. These plots suggest that the Site drained more rapidly and to greater depths prior to restoration. Refer to Appendix 5 for pre and post construction groundwater gage comparison plots.

Of the 37 groundwater monitoring wells on the Site, 32 met the success criteria (water table within 12 inches of the ground surface for 8.5% of the growing season consecutively), and five gages did not meet the success criterion. Of the 32 wells that met the success criterion, hydroperiods ranged from 11.9% to 36.0%. Of the five wells that did not meet success criteria two are in wetland areas at risk. Wells 20 and 23 are along the Site boundary near North Branch. The eastern property boundary in this area is an open ditch that was not filled during construction due to hydrologic trespass constraints. This ditch may be partially draining the groundwater in this area. Wells 40 and 41 were added during MY5 to measure wetland hydroperiod farther west of the ditch. Both of these wells recorded hydroperiods well in excess of the criterion threshold during MY5, MY6, and MY7. Well 26 recorded a hydroperiod of 6.1% during MY7 which does not meet the wetland success criterion. The hydroperiod recorded at well 26 met the success criterion during MY1 – MY3 but has not met success criterion during MY4-MY6. The landscape around this well is no different than other groundwater wells in the area, however it is located within the area used for staging equipment during construction. This old staging area likely has compacted soils that may be limiting groundwater from freely moving to the ground surface, but it is not obvious if this is causing the poor performance of well 26. Two additional groundwater wells were added outside the limits of the old staging area near well 26 to help determine if the compacted soils from the old staging area are affecting groundwater in this area. During MY7 these wells had hydroperiods of 13.4% and 29.5% indicating that well 26 represents a small, isolated area. Well 6 recorded a hydroperiod of 6.9% during MY7 which is close to the wetland criterion but does not meet. The groundwater level fell below 12 inches for two days in mid-March before rising above 12 inches for several days. Without this minor dip in groundwater elevation well 6 would have met the wetland criterion for MY7. This brief drop in groundwater elevation is due to below normal rainfall in March and late February. If average precipitation would have occurred during February and March, well 6 would have likely met wetland success criterion, especially since three adjacent groundwater wells (GW4, GW5, and GW7) meet criterion. Well 24 recorded a hydroperiod of 3.1% during MY7. This well has met wetland success criterion for two of the seven monitoring years and is located in the middle of a wetland where surrounding wells have easily met wetland success criterion. Based on field observations the landscape and soils around well 24 are similar to adjacent wells, and there is no obvious explanation for the difference in performance.

During MY6 a licensed soil scientist observed soil profiles in proximity to groundwater wells that were marginal in attaining the success criterion. The purpose of this investigation was to document the presence or absence of soil-based indicators of a contemporary, persistent high water table in these questionable areas. The study areas are denoted by the orange boundary on the LSS report figure. The detailed report is attached in Appendix 5. Evidence of contemporary wetland hydrology was observed throughout the westernmost study area with the exception of a previous haul road which was slightly elevated. A portion of this area was classified as wetland credit at risk. Boring 10 was located within the

at risk area, and evidence of a contemporary wetland hydrology regime was observed. Evidence of persistent saturation was also observed throughout the entire study area surrounding GW5 and GW6. The at risk study area surrounding boring 05, boring 06, and GW 34 exhibited only weak evidence of saturation. This area may not have a persistent wetland hydrology regime. Evidence of a contemporary wetland hydrology regime was observed throughout the entirety of the study area surrounding GW13 and boring 01, including the at risk area that lies within. All soil profiles observed within the study area surrounding borings 02, 03, 04, and GW24 exhibited evidence of contemporary wetland hydrology. The area surrounding boring 08 and GW26 contained a potential upland area with non-hydric soil. The remainder of this study area contained evidence of contemporary wetland hydrology. A potential upland area was identified within the study area surrounding GW20 and GW23 which generally corresponds with the area previously placed at risk. The entire study area east of Devil's Racetrack road exhibited contemporary evidence of a persistent high water table.

1.2.7 Maintenance Plan

Overall the Site is in good condition, but a few maintenance items will be monitored. Pines, and sweetgum will be monitored and treated as necessary across the Site. Beaver activity will continue to be monitored and dealt with, as necessary. Soil quality of the eastern side of the Site will continue to have additional amendments applied based on soil test results. This area will also be monitored for areas with low herbaceous cover and re-seeded if necessary.

1.3 Monitoring Year 7 Summary

Overall, the Site has met the required vegetation, hydrology, and stream success criteria for MY7. Vegetation plot data suggests the Site is on track to meeting the MY7 success criteria. Only one plot fell short of the planted stem density criterion, but only by one stem when counting a cherrybark oak volunteer. The average stem height per plot is 12.7 feet, exceeding the ten foot height requirement. All streams within the Site are stable and functioning as designed. Each stream documented multiple bankfull events and all three intermittent streams exceeded 30 consecutive days of flow for MY7. Of the 37 groundwater monitoring wells on the Site, 32 met the success criteria (water table with 12 inches of the ground surface for 8.5% of the growing season consecutively), two of the wells that didn't meet were in areas of wetlands deemed to be at risk for credit. No easement encroachments were observed during MY7. The USDA removed beaver from the Site three different times during MY7. Invasive and undesired competing vegetation will continue to be monitored and treatments will be applied if necessary. Pine trees were removed on the west side of the Site and soil amendments were added to the east side of the project. The vegetation on the east side of Devil's Racetrack has continued to drastically improve.

Summary information and data related to the success of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

Section 2: METHODOLOGY

Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All the Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Crest gages and pressure transducers were installed in surveyed riffle cross sections and monitored quarterly. Hydrology attainment installation and monitoring methods are in accordance with the USACE (2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-DMS Level 2 Protocol (Lee et al., 2008).

Section 3: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, C.C., Rawlins, C.L., Potyondy, J.P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-DMS Protocol for Recording Vegetation Version 4.2. Retrieved from http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf.
- Rosgen, D. L. 1994. A classification of natural rivers. *Catena* 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. Center For Computational Hydroscience and Bioengineering, Oxford Campus, University of Mississippi, Pages 12-22.
- United States Army Corps of Engineers (USACE). 2003. Stream Mitigation Guidelines. USACE, NCDEQ-DWR, USEPA, NCWRC.
- United States Department of Agriculture (USDA). 2002. Natural Resources Conservation Service, Climate Information for Johnston County, NC (1971-2000). WETS Station: Clayton, NC1820.
- United States Geological Survey (USGS). 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc. 2013. Devil's Racetrack Stream and Wetland Mitigation Plan. DMS, Raleigh, NC.
- Wildlands Engineering, Inc. 2014. Devil's Racetrack Stream and Wetland Mitigation Site Baseline Monitoring Document and As-Built Baseline Report. DMS, Raleigh, NC.
- Winter, Thomas C., Harvey, Judson W., Franke, O. Lehn, Alley, William M. 1998. Ground Water and Surface Water: A Single Resource.

0 0.5 1 Miles

Ч

Figure 1. Project Vicinity Map Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 7 - 2020 Johnston County, NC

Figure 2a. Project Component/Asset Map
Devil's Racetrack Mitigation Site
DMS Project No. 95021
Monitoring Year 7 - 2020

Johnston County, NC

0 250 500 Feet

Figure 2b. Project Component/Asset Map Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 7 - 2020 Johnston County, NC

Table 1. Project Components and Mitigation Credits Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring	Vaar	7 -	2020

Mitigation Credits										
	Stream		Riparian \	Riparian Wetland		Non-Riparian Wetland		Nitrogen Nutrient Offset	Phosphorous Nutrient Offset	
Туре	R	RE	R	RE	R	RE				
Totals	18,215	0	55.53	0	N/A	N/A	N/A	N/A	N/A	
Totals	0	0	2.97	0	N/A	N/A	N/A	N/A	N/A	

Project Components

Reach ID	As-Built Existing Stationing/ Footage/ Location Acreage As-Built Existing Approach Equivalent		Restoration Footage/ Acreage	Mitigation Ratio	Credits (SMU/ WMU)		
				Streams			
Devil's Racetrack Creek (West) (DOT ROW)	0+00-0+20	20 LF	P1	Restoration (No Credit)	20	N/A	N/A
Devil's Racetrack Creek (West)	0+20-16+26 & 17+50-52+05	4,755 LF	P1	Restoration	5,061	1:1	5,061
Devil's Racetrack Creek (West) (Power Line Easement)	16+26-17+50	196 LF	P1	Restoration (Partial Credit)	124	4:1 ¹	31
Devil's Racetrack Creek (West) (DOT ROW)	52+05-52+11	5 LF	P1	Restoration (No Credit)	6	N/A	N/A
Devil's Racetrack (East) (DOT ROW)	52+59-52+65	5 LF	P1	Restoration (No Credit)	6	N/A	N/A
Devil's Racetrack (East)	52+65-70+73 71+03-88+00	4,778 LF	P1/2	Restoration	3,509	1:1	3,509
Devil's Racetrack (East)	88+31-106+85	1,770 2.	P1/2	Restoration	1,854	1:1	1,854
Devil's Racetrack (East) (Easement Break)	70+73-71+03	30 LF	P1/2	Restoration (No Credit)	30	N/A	N/A
Devil's Racetrack (East) (Easement Break)	88+00 to 88+31	31 LF	P1/2	Restoration (No Credit)	31	N/A	N/A
Devil's Racetrack (East)	106+85-107+97	0 LF	P1/2	Restoration (No Credit)	112	N/A	N/A
Southwest Branch	500+00-501+31 600+00-600+23	154 LF	EII	Enhancement	154	2.5:1	61.6
Southwest Branch	501+31-502+06	75 LF	EI	Enhancement	75	1.5:1	50
Southwest Branch	502+06-504+85 505+99-511+32	740 LF	P1/2	Restoration	812	1:1	812
Southwest Branch (Power Line Easement)	504+85-505+99	111 LF	P1/2	Restoration (Partial Credit)	114	4:11	28.5
Middle Branch	200+00-204+10	410 LF		Headwater Wetland	410	1:1	410
Middle Branch	204+10-219+06	1,326 LF	P1/2	Restoration	1,496	1:1	1,496
Southeast Branch	300+00-305+03 305+35-328+92	2,946 LF	P1	Restoration	2,860	1:1	2,860
Southeast Branch (Easement Break)	305+03-305+35	30 LF	P1	Restoration (Partial Credit)	32	N/A	N/A
North Branch	403+76-424+18		P1	Restoration	2,042	1:1	2,042
				Wetlands			
Riparian Wetlands (West)	N/A	0.0 ac	N/A	Restoration	51.70	1:1	51.70
Riparian Wetlands (West) (Power Line Easement)	N/A	0.0 ac	N/A	Restoration (Partial Credit)	1.53	4:1	0.38
Riparian Wetlands (East)	N/A	0.0 ac	N/A	Restoration	3.45	1:1	3.45
Riparian Wetlands (West)	N/A	0.0 ac	N/A	Restoration	2.95	1:1	2.95
Riparian Wetlands (West) (Power Line Easement)	N/A	0.0 ac	N/A	Restoration (Partial Credit)	0.07	4:1	0.02

Component Summation

Restoration Level	Stream (LF)	Riparian Wetland I		Non-Riparian Wetland (acres)	Buffer(square feet)	Upland (acres)
		Riverine	Non-Riverine			
Restoration	18,519	56.68	-	-	-	-
Restoration At Risk		3.02	-	-	-	-
Enhancement I	75					
Enhancement II	154					
Creation		-	-	-		
Preservation	-	-	-	-		-

Table 1A. Project Mitigation Credit History

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

				1	Mitigation Cre	dits					
Reach ID	Approach	Mit Plan Credits (SMU/WMU)	MY0 Credits (SMU/WMU)	MY1 Credits (SMU/WMU)	MY2 Credits (SMU/WMU)	MY3 Credits (SMU/WMU)	MY4 Credits (SMU/WMU)	MY5 Credits (SMU/WMU)	MY6 Credits (SMU/WMU)	MY7 Credits (SMU/WMU)	Notes
					Streams						
Devil's Racetrack Creek (West)	P1	5,061	5,061	5,122	5,122	5,122	5,061	5,061	5,061	5,061	2, 4
Devil's Racetrack Creek (West) (Power Line Easement)	P1	31	31	32	32	32	31	31	31	31	2, 4
Devil's Racetrack Creek (East)	P1/2	5,363	5,461	5,364	5,364	5,364	5,363	3509/ 1,854	5,363	5,363	1, 2, 4, 6, 11
Southwest Branch	EII	62	61.60	62	62	62	61.6	61.6	61.6	61.6	2, 5
Southwest Branch	El	50	50.67	51	51	51	50	50	50	50	2, 4
Southwest Branch	P1/2	812	811	829	829	829	812	812	812	812	1, 2, 4
Southwest Branch (Power Line Easement)	P1/2	29	28.50	29	29	29	28.5	28.5	28.5	28.5	5
Middle Branch	Headwater Wetland	410	400	410	410	410	410	410	410	410	1, 2
Middle Branch	P1/2	1,496	1,506	1,505	1,505	1,505	1,496	1,496	1,496	1,496	1, 2, 4
Southeast Branch	P1	2,860	2,848	2,919	2,916	2,916	2,860	2,860	2,860	2,860	1, 2, 3, 4
North Branch	P1	2,042	2,418	2,050	2,050	2,050	2,042	2,042	2,042	2,042	1, 2, 4
Total		18,216	18,677	18,373	18,370	18,370	18,215	18,215	18,215	18,215	
		ı		ı	Wetlands						
Riparian Wetlands (West)	N/A	51.4	57.9	57.9	57.9	57.9	54.65	51.70/ 2.95	51.70/ 2.95	51.70/ 2.95	5, 7, 8, 9, 10
Riparian Wetlands (West) (Power Line Easement)	N/A	0.4	0.4	0.4	0.4	0.4	0.40	0.38/0.02	0.38/0.02	0.38/0.02	5
Riparian Wetlands (East)	N/A	3.4	3.8	3.8	3.8	3.8	3.45	3.45	3.45	3.45	5, 8, 9, 10
Total	I	55.2	62.1	62.1	62.1	62.1	58.50	58.50	58.50	58.50	

- As-Built credit calculations were not calculated correctly.
 During MY1 credits were updated based on as-built thalweg alignments.
- 3. During MY2 a section of Southeast Branch was removed from credit because it was an easement crossing and not part of the powerline easement.
- 4. During MY4 credits were updated based on stream centerlines and Mitigation Plan credits after discussions with the IRT.
- 5. During MY4 DMS requested mitigation credits be calculated to 3 decimal places.
- 6. Durining MYS the IRT categorized the lower section of Devil's Racetrack Creek (East) as credits at risk due to the lack of vegetation.
 7. Wetland credits were miscalculated in the Mitigation Plan on the west side of the project. The IRT was sent a formal letter describing this and approved it.
- 8. As-Built wetland credits were based on anticipated wetland boundaries which included stream channels. The stream channel areas were removed during MY4. During as-built $two \ small \ wetland \ areas \ not \ included \ in \ Mitigation \ Plan \ were \ added, \ but \ removed \ during \ MY4.$
- 9. During MY4 wetland credits were reverted back Mitigation Plan credits after discussions with the IRT, and the area around groundwater well 10 was removed.

 10. Durining MY5 the IRT categorized a few areas as credits at risk based on groundwater well performance and soil conditions.
- 11. Durining MY6 site walk the IRT removed the lower section of Devil's Racetrack Creek (East) from credits at risk due to sufficient vegetation growth.

Table 2. Project Activity and Reporting History
Devil's Racetrack Mitigation Site (DMS Project No. 95021)
Monitoring Year 7 - 2020

Activity or Report		Date Collection	Completion or Scheduled
Activity of Report		Complete	Delivery
Mitigation Plan		September 2011-	January 2012
Mitigation Plan		March 2012	January 2013
Final Desira Construction Blanc		September 2011-	A
Final Design - Construction Plans		March 2012	August 2013
Construction		December 2013-	February 2014
Constituction		February 2014	rebluary 2014
Temporary S&E mix applied to entire project a	area ¹	February 2014	February 2014
Permanent seed mix applied to reach/segmen		February 2014	February 2014
Bare root and live stake plantings for reach/se	egments	February 2014	February 2014
Baseline Monitoring Document (Year 0)	Stream Survey	February 2014	May 2014
Baseline Monitoring Document (Year 0)	Vegetation Survey	February 2014	iviay 2014
Voor 1 Monitoring	Stream Survey	July 2014	December 2014
Year 1 Monitoring	Vegetation Survey	September 2014	December 2014
Minor Stream Repairs			May 2014
Year 2 Monitoring	Stream Survey	April 2015	December 2015
rear 2 Monitoring	Vegetation Survey	June 2015	December 2015
Minor Stream Repairs & Soil Amendments			April 2015
Year 3 Monitoring	Stream Survey	April 2016	December 2016
rear 5 Monitoring	Vegetation Survey	June 2016	December 2016
Soil Amendments			June 2016
Beaver Dam Removal			September 2016
Year 4 Monitoring	Stream Survey	May 2017	December 2017
9	Vegetation Survey	August 2017	
Pine Tree Removal			February 2017
Hugel Beds Installed			May 2017
Soil Amendments			November 2017
Year 5 Monitoring	Stream Survey	April 2018	December 2018
9	Vegetation Survey	August 2018	
Soil Amendments			September 2018
Invasive Treatment			October - November 2018
Beaver Removal			December 2018
Pine Tree Removal			January 2019
Year 6 Monitoring	Stream Survey	April 2019	December 2019
<u> </u>	Vegetation Survey	August 2019	
Soil Amendments			August & October 2019
Live Stake Planting			March 2019
Invasive Treatment			September 2019
Year 7 Monitoring	Stream Survey	March & April 2020	December 2020
Soil Amendments & Live Stake Planting	Vegetation Survey	August 2020	January 2020
Pine Tree Removal			February 2020
Soil Amendments			April 2020
Beaver Dam Removal		February Ma	ny, & December 2020
Deaver Dani Nemovai		rebludly, Ivia	y, & Decellinel 2020

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Designer	Wildlands Engineering, Inc.
Jeff Keaton, PE	312 West Millbrook Road, Suite 225
	Raleigh, NC 27609
	919.851.9986
Construction Contractor (East Side)	Land Mechanic Designs, Inc.
	126 Circle G Lane
	Willow Spring, NC 27592
Construction Contractor (West Side)	Fluvial Solutions
	P.O. Box 28749
	Raleigh, NC 27611
Planting Contractor	Bruton Natural Systems, Inc
	P.O. Box 1197
	Fremont, NC 27830
Seeding Contractor	Bruton Natural Systems, Inc
	P.O. Box 1197
	Fremont, NC 27830
Seed Mix Sources	Green Resource, LLC
Nursery Stock Suppliers	Duling and San Namen and NG Ferret Sanda
	Dykes and Son Nursery and NC Forest Service (Claridge Nursery)
Bare Roots	(Claridge Nursery)
Live Stakes	Bruton Natural Systems, Inc
Monitoring Performers	Wildlands Engineering, Inc.
Stream, Vegetation, and Wetland Monitoring, POC	Jason Lorch
	919.851.9986, ext. 107

Table 4. Project Information and Attributes

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

	Project Information						
Project Name	Devil's Racetrack Mitigation Site						
County	Johnston County						
Project Area (acres)	96.065 ac						
Project Coordinates (latitude and longitude)	35° 27'01.58" N, 78° 23' 18.08" W						
Project Watershed Summary Information							
Physiographic Province	Upper Coastal Plain						
River Basin	Neuse						
USGS Hydrologic Unit 8-digit	03020201						
USGS Hydrologic Unit 14-digit	03020201140010						
DWR Sub-basin	03-04-02						
Project Drainage Area (acres)	831 ac						
Project Drainage Area Percentage of Impervious Area	<1%						
CGIA Land Use Classification	62% forest/wetland, 34% farm land, 4% developed						

Reach Summary Information

Parameters	Southwest Middle Branch		Southeast Branch	North Branch		Devil's Racetrack Creek (east)			
Length of reach (linear feet) - Post-Restoration	1,155	1,906	2,892	2,042	5,211	5,542			
Drainage area (acres)	20.6	10.8	69.9	49.9	493.5	831.4			
NCDWR stream identification score	34.5 - 37	30	29 - 30.75	32	38	37.5			
NCDWR Water Quality Classification C/NSW									
Morphological Desription (stream type)	Р	Р	P/I	Р	Р	P			
Evolutionary trend (Simon's Model) - Pre- Restoration									
Underlying mapped soils		dy Ioam, Bibb sand n silt Ioam, Norfolk		•	loam, Leaf silt loam	, Lynchburg			
Drainage class									
Soil Hydric status									
Slope									
FEMA classification			No	one					
Native vegetation community		Co	astal Plain bottor	nland riparian fo	rest	·			
Percent composition exotic invasive vegetation -Post-Restoration			C	%					

Regulatory Considerations

Regulation	Applicable?	Resolved?	Supporting Documentation
Waters of the United States - Section 404	Х	Х	USACE Nationwide Permit No.27 and DWQ 401 Water Quality
Waters of the United States - Section 401	Х	Х	Certification No. 3885.
Division of Land Quality (Dam Safety)	N/A	N/A	N/A
Endangered Species Act	х	Х	Devils Racetrack Mitigation Plan; Wildlands determined "no effect" on Johnston County listed endangered species.
Historic Preservation Act	х	Х	No historic resources were found to be impacted (letter from SHPO dated 7/20/2011).
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	N/A	N/A	N/A
FEMA Floodplain Compliance	N/A	N/A	The project streams do not have an associated regulatory flooplaing; however the downstream end of Devil's Racetrack Creek is located within the floodwasy and flood fringe of the Neuse River (FEMA Zone AE, FIRM panel 1680).
Essential Fisheries Habitat	N/A	N/A	N/A

Figure 3.0 Integrated Current Condition Plan View (Key)

Devil's Racetrack Mitigation Site

DMS Project No. 95021

Monitoring Year 7 - 2020

Johnston County, NC

Table 5a. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Devil's Racetrack (West) (5,211 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	74	74			100%			
	3. Meander Pool	Depth Sufficient	74	74			100%			
	Condition	Length Appropriate	74	74			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	74	74			100%			
	4. maiweg Position	Thalweg centering at downstream of meander bend (Glide)	74	74			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
	'		<u> </u>	Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	6	6			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth≥ 1.6 Rootwads/logs providing some cover at baseflow	6	6			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 5b. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Devil's Racetrack (East) (5,542 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	85	85			100%			
	3. Meander Pool	Depth Sufficient	85	85			100%			
	Condition	Length Appropriate	85	85			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	85	85			100%			
	4. Maiweg Position	Thalweg centering at downstream of meander bend (Glide)	85	85			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
2	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	17	17			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	17	17			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	17	17			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	17	17			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	17	17			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 5c. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Southeast Branch (2,892 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	121	121			100%			
	3. Meander Pool	Depth Sufficient	120	120			100%			
	Condition	Length Appropriate	120	120			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	120	120			100%			
	4. Inalweg Position	Thalweg centering at downstream of meander bend (Glide)	120	120			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	67	67			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	67	67			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	67	67			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	67	67			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth≥ 1.6 Rootwads/logs providing some cover at baseflow	67	67			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 5d. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Middle Branch (1,906 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	79	79			100%			
	3. Meander Pool	Depth Sufficient	78	78			100%			
	Condition	Length Appropriate	78	78			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	78	78			100%			
	4. Illaiweg Position	Thalweg centering at downstream of meander bend (Glide)	78	78			100%			
							•			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
2	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	52	52			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	52	52			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	52	52			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	52	52			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	52	52			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 5e. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Southwest Branch (1,155 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	48	48			100%			
	3. Meander Pool	Depth Sufficient	47	47			100%			
	Condition	Length Appropriate	47	47			100%			
	4 Thelwag Position	Thalweg centering at upstream of meander bend (Run)	47	47			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	47	47			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	28	28			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	28	28			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	28	28			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	28	28			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	28	28			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 5f. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

North Branch (2,042 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation			0	0	100%			
		Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	35	35			100%			
	3. Meander Pool Condition	Depth Sufficient	34	34			100%			
		Length Appropriate	34	34			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	34	34			100%			
		Thalweg centering at downstream of meander bend (Glide)	34	34			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	10	10			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6. Vegetation Condition Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7- 2020

Planted Acreage

96

Vegetation Category	Definitions		Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	e Areas Very limited cover of both woody and herbaceous material.		0	0.0	0.0%
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.		0	0.0	0.0%
Total					0.0%
Areas of Poor Growth Rates or Vigor Areas with woody stems of a size class that are obviously small given the myear.		0.25 Ac	3	22.7	23.6%
Cumulative Total					23.6%

Easement Acreage

96

Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Planted Acreage
Invasive Areas of Concern	Areas of points (if too small to render as polygons at map scale).	1,000	0	0	0.0%
Easement Encroachment Areas	Areas of points (if too small to render as polygons at map scale).	none	0	0	0%

STREAM PHOTOGRAPHS

PHOTO POINT 1 DRT West - upstream (04/01/2020)

PHOTO POINT 1 DRT West - downstream (04/01/2020)

PHOTO POINT 2 DRT West - upstream (04/01/2020)

PHOTO POINT 2 DRT West - downstream (04/01/2020)

PHOTO POINT 3 DRT West - upstream (04/01/2020)

PHOTO POINT 3 DRT West - downstream (04/01/2020)

PHOTO POINT 4 DRT West - upstream (04/01/2020)

PHOTO POINT 4 DRT West - downstream (04/01/2020)

PHOTO POINT 5 DRT West - upstream (04/01/2020)

PHOTO POINT 5 DRT West - downstream (04/01/2020)

PHOTO POINT 6 DRT West - upstream (04/01/2020)

PHOTO POINT 6 DRT West - downstream (04/01/2020)

PHOTO POINT 7 DRT West - upstream (04/01/2020)

PHOTO POINT 7 DRT West - downstream (04/01/2020)

PHOTO POINT 8 DRT West - upstream (04/01/2020)

PHOTO POINT 8 DRT West - downstream (04/01/2020)

PHOTO POINT 9 DRT West - upstream (04/01/2020)

PHOTO POINT 9 DRT West - downstream (04/01/2020)

PHOTO POINT 10 DRT West - upstream (04/01/2020)

PHOTO POINT 10 DRT West - downstream (04/01/2020)

PHOTO POINT 11 DRT West - upstream (04/01/2020)

PHOTO POINT 11 DRT West - downstream (04/01/2020)

PHOTO POINT 12 DRT West - upstream (04/01/2020)

PHOTO POINT 12 DRT West - downstream (04/01/2020)

PHOTO POINT 13 DRT West - upstream (04/01/2020)

PHOTO POINT 13 DRT West - downstream (04/01/2020)

PHOTO POINT 14 DRT West - upstream (04/01/2020)

PHOTO POINT 14 DRT West - downstream (04/01/2020)

PHOTO POINT 15 DRT West - upstream (04/01/2020)

PHOTO POINT 15 DRT West - downstream (04/01/2020)

PHOTO POINT 16 DRT West - upstream (04/01/2020)

PHOTO POINT 16 DRT West - downstream (04/01/2020)

PHOTO POINT 17 DRT West - upstream (04/01/2020)

PHOTO POINT 17 DRT West - downstream (04/01/2020)

PHOTO POINT 18 DRT West - upstream (04/01/2020)

PHOTO POINT 18 DRT West - downstream (04/01/2020)

PHOTO POINT 19 DRT West - upstream (04/01/2020)

PHOTO POINT 19 DRT West - downstream (04/01/2020)

PHOTO POINT 20 DRT West - upstream (04/01/2020)

PHOTO POINT 20 DRT West - downstream (04/01/2020)

PHOTO POINT 21 DRT West - upstream (04/01/2020)

PHOTO POINT 21 DRT West - downstream (04/01/2020)

PHOTO POINT 22 DRT West - upstream (04/01/2020)

PHOTO POINT 22 DRT West - downstream (04/01/2020)

PHOTO POINT 23 DRT West - upstream (04/01/2020)

PHOTO POINT 23 DRT West - downstream (04/01/2020)

PHOTO POINT 24 DRT West - upstream (04/01/2020)

PHOTO POINT 24 DRT West - downstream (04/01/2020)

PHOTO POINT 25 DRT West - upstream (04/01/2020)

PHOTO POINT 25 DRT West - downstream (04/01/2020)

PHOTO POINT 26 DRT West - (04/01/2020)

PHOTO POINT 27 DRT East - (04/01/2020)

PHOTO POINT 28 DRT East - upstream (04/01/2020)

PHOTO POINT 28 DRT East - downstream (04/01/2020)

PHOTO POINT 29 DRT East - upstream (04/01/2020)

PHOTO POINT 29 DRT East - downstream (04/01/2020)

PHOTO POINT 30 DRT East - upstream (04/01/2020)

PHOTO POINT 30 DRT East - downstream (04/01/2020)

PHOTO POINT 31 DRT East - upstream (04/01/2020)

PHOTO POINT 31 DRT East - downstream (04/01/2020)

PHOTO POINT 32 DRT East - upstream (04/01/2020)

PHOTO POINT 32 DRT East - downstream (04/01/2020)

PHOTO POINT 33 DRT East - upstream (04/01/2020)

PHOTO POINT 33 DRT East - downstream (04/01/2020)

PHOTO POINT 34 DRT East - upstream (04/01/2020)

PHOTO POINT 34 DRT East - downstream (04/01/2020)

PHOTO POINT 35 DRT East - upstream (04/01/2020)

PHOTO POINT 35 DRT East - downstream (04/01/2020)

PHOTO POINT 36 DRT East - upstream (04/01/2020)

PHOTO POINT 36 DRT East - downstream (04/01/2020)

PHOTO POINT 37 DRT East - upstream (04/01/2020)

PHOTO POINT 37 DRT East - downstream (04/01/2020)

PHOTO POINT 38 DRT East - upstream (04/01/2020)

PHOTO POINT 38 DRT East - downstream (04/01/2020)

PHOTO POINT 39 DRT East - upstream (04/01/2020)

PHOTO POINT 39 DRT East - downstream (04/01/2020)

PHOTO POINT 40 DRT East - upstream (04/01/2020)

PHOTO POINT 40 DRT East - downstream (04/01/2020)

PHOTO POINT 41 DRT East - upstream (04/01/2020)

PHOTO POINT 41 DRT East - downstream (04/01/2020)

PHOTO POINT 42 DRT East - upstream (04/01/2020)

PHOTO POINT 42 DRT East - downstream (04/01/2020)

PHOTO POINT 43 DRT East - upstream (04/01/2020)

PHOTO POINT 43 DRT East - downstream (04/01/2020)

PHOTO POINT 44 DRT East - upstream (04/01/2020)

PHOTO POINT 44 DRT East - downstream (04/01/2020)

PHOTO POINT 45 DRT East - upstream (04/01/2020)

PHOTO POINT 45 DRT East - downstream (04/01/2020)

PHOTO POINT 46 DRT East - upstream (04/01/2020)

PHOTO POINT 46 DRT East - downstream (04/01/2020)

PHOTO POINT 47 DRT East - upstream (04/01/2020)

PHOTO POINT 47 DRT East - downstream (04/01/2020)

PHOTO POINT 48 DRT East - upstream (04/01/2020)

PHOTO POINT 48 DRT East - downstream (04/01/2020)

PHOTO POINT 49 DRT East - upstream (04/01/2020)

PHOTO POINT 49 DRT East - downstream (04/01/2020)

PHOTO POINT 50 DRT East - upstream (04/01/2020)

PHOTO POINT 50 DRT East - downstream (04/01/2020)

PHOTO POINT 51 DRT East - upstream (04/01/2020)

PHOTO POINT 51 DRT East - downstream (04/01/2020)

PHOTO POINT 52 DRT East - upstream (05/07/2020)

PHOTO POINT 52 DRT East - downstream (05/07/2020)

PHOTO POINT 53 DRT East - upstream (04/01/2020)

PHOTO POINT 53 DRT East - downstream (04/01/2020)

PHOTO POINT 54 DRT East - upstream (07/20/2020)

PHOTO POINT 54 DRT East - downstream (07/20/2020)

PHOTO POINT 55 Southwest Branch - upstream (04/01/2020)

PHOTO POINT 55 Southwest Branch - downstream (04/01/2020)

PHOTO POINT 56 Southwest Branch - upstream (05/07/2020)

PHOTO POINT 56 Southwest Branch - downstream (05/07/2020)

PHOTO POINT 57 Southwest Branch - upstream (05/07/2020)

PHOTO POINT 57 Southwest Branch - downstream (05/07/2020)

PHOTO POINT 58 Southwest Branch - upstream (05/07/2020)

PHOTO POINT 58 Southwest Branch - downstream (05/07/2020)

PHOTO POINT 59 Southwest Branch - upstream (04/01/2020)

PHOTO POINT 59 Southwest Branch - downstream (04/01/2020)

PHOTO POINT 60 Southwest Branch - upstream (04/01/2020)

PHOTO POINT 60 Southwest Branch - downstream (04/01/2020)

PHOTO POINT 61 Middle Branch - upstream (04/01/2020)

PHOTO POINT 61 Middle Branch - downstream (04/01/2020)

PHOTO POINT 62 Middle Branch - upstream (04/01/2020)

PHOTO POINT 62 Middle Branch - downstream (04/01/2020)

PHOTO POINT 63 Middle Branch - upstream (04/01/2020)

PHOTO POINT 63 Middle Branch - downstream (04/01/2020)

PHOTO POINT 64 Middle Branch - upstream (04/01/2020)

PHOTO POINT 64 Middle Branch - downstream (04/01/2020)

PHOTO POINT 65 Middle Branch - upstream (04/01/2020)

PHOTO POINT 65 Middle Branch - downstream (04/01/2020)

PHOTO POINT 66 Middle Branch - upstream (04/01/2020)

PHOTO POINT 66 Middle Branch - downstream (04/01/2020)

PHOTO POINT 67 Middle Branch - upstream (04/01/2020)

PHOTO POINT 67 Middle Branch - downstream (04/01/2020)

PHOTO POINT 68 Middle Branch - downstream (04/01/2020)

PHOTO POINT 69 Middle Branch - upstream (04/01/2020)

PHOTO POINT 69 Middle Branch - downstream (04/01/2020)

PHOTO POINT 70 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 70 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 74 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 74 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 75 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 75 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 76 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 76 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 77 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 77 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 78 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 78 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 79 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 79 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 80 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 81 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 81 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 82 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 82 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 83 Southeast Branch - upstream (04/01/2020)

PHOTO POINT 83 Southeast Branch - downstream (04/01/2020)

PHOTO POINT 84 North Branch - upstream (04/01/2020)

PHOTO POINT 84 North Branch - downstream (04/01/2020)

PHOTO POINT 85 North Branch - upstream (04/01/2020)

PHOTO POINT 85 North Branch - downstream (04/01/2020)

PHOTO POINT 86 North Branch - upstream (04/01/2020)

PHOTO POINT 86 North Branch - downstream (04/01/2020)

PHOTO POINT 87 North Branch - upstream (04/01/2020)

PHOTO POINT 87 North Branch – downstream (04/01/2020)

PHOTO POINT 88 North Branch - upstream (04/01/2020)

PHOTO POINT 88 North Branch - downstream (04/01/2020)

PHOTO POINT 89 North Branch - upstream (04/01/2020)

PHOTO POINT 89 North Branch - downstream (04/01/2020)

PHOTO POINT 90 North Branch - upstream (04/01/2020)

PHOTO POINT 90 North Branch - downstream (04/01/2020)

PHOTO POINT 91 North Branch - upstream (04/01/2020)

PHOTO POINT 91 North Branch - downstream (04/01/2020)

PHOTO POINT 92 North Branch - upstream (04/01/2020)

PHOTO POINT 92 North Branch - downstream (04/01/2020)

PHOTO POINT 93 North Branch - upstream (04/01/2020)

PHOTO POINT 93 North Branch - downstream (04/01/2020)

PHOTO POINT 94 North Branch - upstream (04/01/2020)

PHOTO POINT 94 North Branch - downstream (04/01/2020)

VEGETATION PHOTOGRAPHS

VEG PLOT 49 (08/11/2020)

VEG PLOT 50 (08/11/2020)

VEG PLOT 51 (08/11/2020)

OVERVIEW PHOTOGRAPH COMPARISON Devil's Racetrack East Monitoring Year 7

2016 East Side

Table 7 Vegetation Plot Criteria Attainment: Planted Stem Success Criteria

Monitoring Year 7 - 2020

	Success Criteria	
Plot	Met	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	98%
27	Yes	
28	Yes	
29	Yes	
30	Yes	
31	Yes	
32	Yes	
33	Yes	
34	Yes	
35	Yes	
36	Yes	
37	Yes	
38	Yes	
39	Yes	
40	Yes	
41	Yes	
42	Yes	
43	Yes	
44	Yes	
45	Yes	
46	Yes	
47	Yes	
48	Yes	
49	No	
50	Yes	
51	Yes	

Table 7a. Vegetation Plot Criteria Attainment: Average Height By Plot Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 7 - 2020

		Ave	erage Heigh	t by Plot (f	eet)		
Plot	MY1	MY2	MY3	MY4	MY5	MY6	MY7
1	1.8	2.3	3.0	5.0	7.3	8.7	11.4
2	1.6	1.9	2.7	5.0	7.0	9.5	11.7
3	1.8	2.1	2.4	3.7	5.8	7.9	9.8
4	1.8	2.2	3.4	5.6	9.5	11.8	15.1
5	1.7	2.0	2.5	3.8	5.3	7.5	8.9
6	1.8	2.1	3.6	7.3	11.4	13.3	28.1
7	2.0	1.9	2.4	2.6	4.9	6.9	10.3
8	1.9	2.3	3.5	5.6	12.3	8.9	12.1
9	2.3	2.8	4.9	7.4	11.9	13.6	19.5
10	2.1	2.4	6.3	9.9	15.1	16.9	21.0
11	2.1	3.0	5.0	5.8	9.1	11.0	13.5
12	2.2	2.9	5.4	8.9	12.0	13.8	15.5
13	2.4	2.7	5.8	9.8	15.2	17.1	22.4
14	2.2	2.8	5.0	7.8	10.7	13.1	15.5
15	1.9	2.0	3.3	6.5	9.0	11.2	13.7
16	2.2	2.8	4.6	7.7	9.8	13.5	15.0
17	2.4	3.0	4.5	7.3	10.1	12.4	15.2
18	2.0	2.3	3.5	5.9	7.7	8.7	12.8
19	2.3	2.7	3.5	4.2	5.4	6.5	8.4
20	2.1	2.7	4.5	5.3	7.0	8.7	9.5
21	2.2	2.8	4.3	6.9	11.0	14.2	16.8
22	1.7	1.9	2.2	2.6	3.2	3.5	4.1
23	2.2	3.0	5.7	11.4	14.8	18.7	21.9
24	2.5	3.1	4.7	7.5	9.9	12.5	14.4
25	2.4	2.9	4.1	6.5	9.2	10.6	13.8
26	1.9	2.3	3.7	5.9	8.1	10.2	11.8
27	1.9	2.4	2.9	3.8	4.8	6.1	8.1
28	2.0	2.5	4.3	8.6	10.5	14.0	17.4
29	1.9	2.0	3.4	5.0	7.0	9.2	11.0
30	2.4	2.7	3.4	6.0	8.9	13.3	15.1
31	2.2	2.5	4.7	9.5	13.7	16.3	19.2
32	2.1	2.5	3.2	4.8	6.8	9.5	11.6
33	2.1	2.2	3.4	6.4	9.3	11.4	13.9
34	1.8	1.8	2.8	6.1	7.3	8.8	11.1
35	1.9	2.4	3.1	6.2	8.1	10.8	16.5
36	1.8	2.0	2.6	6.2	9.1	11.3	14.0
37	2.0	2.9	5.0	8.9	12.9	15.5	18.6
38	1.9	2.1	2.8	6.0	8.7	11.1	14.6
39	2.4	3.2	5.0	8.1	10.9	14.2	18.1
40	2.1	2.5	4.2	7.3	9.5	11.0	13.4
41	1.9	2.0	3.7	6.9	10.0	12.6	15.6
42	1.4	1.4	1.7	2.7	3.7	5.3	6.9
43	1.5	1.7	2.6	4.9	5.6	7.0	10.3
44	1.6	1.7	1.8	1.9	1.9	3.8	5.2
45	2.0	2.0	2.1	2.3	2.2	3.5	5.2
46	2.0	2.0	2.3	2.4	2.8	4.2	6.9
47	2.0	1.9	1.7	1.8	1.6	1.8	2.6
48	1.7	1.6	1.9	2.0	2.1	2.8	4.3
49	1.9	1.9	1.6	1.6	1.8	3.0	4.8
50	2.1	2.1	2.7	3.5	3.8	4.5	6.4
51	2.0	1.8	2.0	2.6	3.0	4.4	6.6
Average	2.0	2.3 (5 and 10' at M)	3.5	5.7	8.0	9.9	12.7

Performance Criteria is 7' at MY5 and 10' at MY7.

Table 8. CVS Vegetation Table - Metadata

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Database name	Devils Racetrack MY7 cvs-eep-entrytool-v2.3.1.mdb
Database location	F:\Projects\005-02129 Devil's Racetrack\Monitoring\Monitoring Year 7 - 2020\Vegetation Assessment
Computer name	KAITLYN2020
File size	62914560
DESCRIPTION OF WORKSHEETS IN THIS	DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	95021
project Name	Devils Racetrack Mitigation Site
Description	Stream and Wetland Mitigation
River Basin	Neuse
Sampled Plots	51

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

											Cur	rent Plo	t Data	(MY7 2	020)								
Scientific Name	Common Name	Species Type		VP 1			VP 2			VP 3			VP 4			VP 5			VP 6			VP 7	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т
Acer rubrum	red maple	Tree																		1			
Alnus serrulata	hazel alder	Shrub																					
Baccharis	baccharis	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub												3									
Betula nigra	river birch	Tree	1	1	1	1	1	1	3	3	3	2	2	2	2	2	2	5	5	5	6	6	6
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	3	3	3	4	4	4	3	3	3	1	1	1	2	2	2	2	2	2	1	1	1
Ilex opaca	American holly	Tree																					
Juniperus virginiana	eastern red cedar	Tree																					
Laurus nobilis	sweet bay	Shrub																					
Ligustrum sinense	Chinese privet	Exotic																					
Liquidambar styraciflua	sweetgum	Tree			9			10			2			12						4			
Liriodendron tulipifera	tulip tree	Tree																			3	3	3
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	shrub																					
Nyssa biflora	swamp tupelo	Tree				1	1	1															
Nyssa sylvatica	blackgum	Tree	2	2	3	1	1	1	2	2	2												
Pinus	pine	Tree																					1
Pinus taeda	loblolly pine	Tree									4												1
Platanus occidentalis	American sycamore	Tree	2	2	2	2	2	3	2	2	2	3	3	3				2	2	2	2	2	2
Populus deltoides	eastern cottonwood	Tree																					
Prunus serotina	black cherry	Tree																					1
Pyrus calleryana	Callery pear	Exotic																					†
Quercus laurifolia	laurel oak	Tree																					1
Quercus michauxii	swamp chestnut oak	Tree	3	3	3							1	1	1	2	2	2	1	1	1			
Quercus pagoda	cherrybark oak	Tree										1	1	1	1	1	1		_				
Quercus phellos	willow oak	Tree	3	3	3	4	4	5	1	1	1		_		_	_	_						
Quercus rubra	northern red oak	Tree							_	_	-												
Rhus copallinum	flameleaf sumac	shrub																				-	
Salix nigra	black willow	Tree												1						5		-	
Salix sericea	silky willow	Shrub				1								-				1		,		 	
Sambucus	elderberry	Shrub				1												1				 	-
Sambucus canadensis	common elderberry	Shrub				1												1				 	
Taxodium distichum	bald cypress	Tree	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4	5	5	5		 	
Ulmus	elm	Tree					,	,	,	,	,			-	_	-	_		-	-		\vdash	+-
Ulmus alata	winged elm	Tree																				\vdash	\vdash
Ulmus americana	American elm	Tree																				\vdash	
omas americana	American enn	Stem count	16	16	26	16	16	28	14	14	16	11	11	24	11	11	11	15	15	25	12	12	12
		size (ares)	10	16	20	10	1	20	14	14	10	11	1	24	11	1	11	13	1	23	12	1	12
				0.02			0.02			0.02		1	0.02			0.02			0.02			0.02	
		size (ACRES)	7	7		7	7					_		١ ،	<u> </u>	5	-	_			—		4
		Species count		647	8			8	6 567	6 567	8	6	6	9	5		5	5 607	5 607	8	4	4	
		Stems per ACRE	647	64/	1,052	647	647	1,133	56/	56/	647	445	445	971	445	445	445	607	607	1,012	486	486	486

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Exit to most requirements, but less than 10%

Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

											Cur	rent Plo	t Data	(MY7 2	020)								
	A 11			VP 8			VP 9			VP 10			VP 11			VP 12			VP 13			VP 14	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т
Acer rubrum	red maple	Tree			5			6			1			3			4						
Alnus serrulata	hazel alder	Shrub																					
Baccharis	baccharis	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub																					
Betula nigra	river birch	Tree	2	2	2	2	2	2	1	1	1	2	2	2	1	1	1	2	2	2			
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	4	4	4	1	1	1	3	3	3	5	5	5	4	4	4				2	2	2
Ilex opaca	American holly	Tree																					
Juniperus virginiana	eastern red cedar	Tree																					
Laurus nobilis	sweet bay	Shrub																					
Ligustrum sinense	Chinese privet	Exotic																					
Liquidambar styraciflua	sweetgum	Tree			2			1			4			9			5			6			9
Liriodendron tulipifera	tulip tree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	shrub																					
Nyssa biflora	swamp tupelo	Tree				1	1	1										1	1	1			
Nyssa sylvatica	blackgum	Tree																					
Pinus	pine	Tree																					
Pinus taeda	loblolly pine	Tree																					
Platanus occidentalis	American sycamore	Tree	1	1	1	5	5	6	5	5	5	2	2	2	5	5	5	3	3	3	3	3	3
Populus deltoides	eastern cottonwood	Tree															1						
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic			2																		
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree																1	1	1			
Quercus pagoda	cherrybark oak	Tree	1	1	1																		
Quercus phellos	willow oak	Tree				2	2	2							4	4	4	4	4	4			
Quercus rubra	northern red oak	Tree																					
Rhus copallinum	flameleaf sumac	shrub																					
Salix nigra	black willow	Tree																					4
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					
Sambucus canadensis	common elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	4	4	4	5	5	5	3	3	3	2	2	2	2	2	2	5	5	5	10	10	10
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	12	12	19	16	16	24	12	12	17	11	11	23	16	16	26	16	16	22	15	15	28
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	8	6	6	8	4	4	6	4	4	6	5	5	8	6	6	7	3	3	5
		Stems per ACRE		486	769	647	647	971	486	486	688	445	445	931	647	647	1,052	647	647	890	607	607	1,133

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

											Cur	rent Plo	t Data	(MY7 2	020)								
Scientific Name	Common Name	Consider Toma		VP 15			VP 16			VP 17			VP 18			VP 19			VP 20			VP 21	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т
Acer rubrum	red maple	Tree																					
Alnus serrulata	hazel alder	Shrub																					
Baccharis	baccharis	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub												1						12			
Betula nigra	river birch	Tree				6	6	6	2	2	2										3	3	3
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	1	1	1	3	3	3	2	2	2	1	1	1	2	2	2				5	5	5
Ilex opaca	American holly	Tree									5												
Juniperus virginiana	eastern red cedar	Tree																					
Laurus nobilis	sweet bay	Shrub																					
Ligustrum sinense	Chinese privet	Exotic																					
Liquidambar styraciflua	sweetgum	Tree			4			5						6			2			12			
Liriodendron tulipifera	tulip tree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	shrub																					
Nyssa biflora	swamp tupelo	Tree				3	3	3				2	2	2	2	2	2	2	2	2			
Nyssa sylvatica	blackgum	Tree																					
Pinus	pine	Tree																					
Pinus taeda	loblolly pine	Tree												3						10			
Platanus occidentalis	American sycamore	Tree	4	4	4	1	1	1	1	1	1							4	4	4			
Populus deltoides	eastern cottonwood	Tree																					
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic																					
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree	2	2	2										5	5	5	1	1	1			
Quercus pagoda	cherrybark oak	Tree	1	1	1										1	1	1						
Quercus phellos	willow oak	Tree				1	1	1				4	4	5				1	1	1			
Quercus rubra	northern red oak	Tree							1	1	1												
Rhus copallinum	flameleaf sumac	shrub																					
Salix nigra	black willow	Tree			6									1									
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					
Sambucus canadensis	common elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	7	7	7				10	10	10	5	5	5	4	4	4	7	7	7	5	5	5
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	15	15	25	14	14	19	16	16	21	12	12	20	14	14	16	15	15	27	13	13	13
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	7	5	5	6	5	5	6	4	4	8	5	5	6	5	5	8	3	3	3
		Stems per ACRE	607	607	1,012	567	567	769	647	647	850	486	486	809	567	567	647	607	607	1,093	526	526	526

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Exit to most requirements, but less than 10%

Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

											Cur	rent Plo	t Data	(MY7 2	020)								
Scientific Name	Common Name	Species Type		VP 22			VP 23			VP 24			VP 25			VP 26			VP 27			VP 28	
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T
Acer rubrum	red maple	Tree																					
Alnus serrulata	hazel alder	Shrub																					
Baccharis	baccharis	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub												1			21			2			
Betula nigra	river birch	Tree				2	2	2				2	2	2	2	2	2				2	2	2
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	3	3	3				6	6	6	3	3	3	4	4	4	1	1	1	1	1	1
Ilex opaca	American holly	Tree																					
Juniperus virginiana	eastern red cedar	Tree			1																		
Laurus nobilis	sweet bay	Shrub																		12			
Ligustrum sinense	Chinese privet	Exotic																					4
Liquidambar styraciflua	sweetgum	Tree												2									
Liriodendron tulipifera	tulip tree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	shrub																					
Nyssa biflora	swamp tupelo	Tree													1	1	1				2	2	2
Nyssa sylvatica	blackgum	Tree																					
Pinus	pine	Tree																					
Pinus taeda	loblolly pine	Tree															3			1			1
Platanus occidentalis	American sycamore	Tree	1	1	1	7	7	7	4	4	4	4	4	4	1	1	1	1	1	1	3	3	3
Populus deltoides	eastern cottonwood	Tree																					
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic																					
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree							2	2	2						1	4	4	4			
Quercus pagoda	cherrybark oak	Tree	3	3	3						_												
Quercus phellos	willow oak	Tree	2	2	2	2	2	3	1	1	1							1	1	1	5	5	5
Quercus rubra	northern red oak	Tree	_				_		_	_	_								_	_			
Rhus copallinum	flameleaf sumac	shrub																					
Salix nigra	black willow	Tree						3						1						1			5
Salix sericea	silky willow	Shrub												_						_			
Sambucus	elderberry	Shrub																					
Sambucus canadensis	common elderberry	Shrub									1												
Taxodium distichum	bald cypress	Tree	7	7	7	3	3	3	4	4	4	6	6	6	3	3	3	8	8	8	1	1	2
Ulmus	elm	Tree	<u> </u>	-	<u> </u>	Ť	<u> </u>		<u> </u>	_	_	Ť	Ť	١Ť	Ť			Ť	٠,	Ť	<u> </u>	-	
Ulmus alata	winged elm	Tree		l	l	1	 	1	1			1		l		l	l	1			1	l	1
Ulmus americana	American elm	Tree		l	l	1	 	1	1			1		l		l	l	1			1	l	1
oas americana	, and real citi	Stem count	16	16	17	14	14	18	17	17	18	15	15	18	11	11	12	15	15	28	14	14	20
		size (ares)	10	1	±/	14	1	10	1/	1	10	13	1	10	11	1	12	15	1	20	14	1	20
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	6	4	4	5	5	5	6	4	4	7	5	5	8	5	5	9	6	6	9
		Stems per ACRE		647	688	567	567	728	688	688	728	607	607	728	445	445	486	607	607	1,133		567	809
		sterns per ACRE	047	047	ÖÖÖ	307	J0/	/28	088	000	728	007	607	/28	445	445	480	007	607	1,133	307	J0/	009

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Exit to most requirements, but less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

											Cur	rent Plo	t Data	(MY7 2	020)								
Scientific Name	Common Name	Consider Torre		VP 29			VP 30			VP 31			VP 32			VP 33			VP 34			VP 35	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т
Acer rubrum	red maple	Tree															3						
Alnus serrulata	hazel alder	Shrub															6						
Baccharis	baccharis	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub						1												6			3
Betula nigra	river birch	Tree	1	1	3	1	1	1	4	4	4				3	3	3	3	3	3	4	4	4
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree				1	1	1	1	1	1	7	7	9	2	2	2	2	2	2	2	2	2
Ilex opaca	American holly	Tree																					
Juniperus virginiana	eastern red cedar	Tree																					
Laurus nobilis	sweet bay	Shrub																					
Ligustrum sinense	Chinese privet	Exotic																					
Liquidambar styraciflua	sweetgum	Tree			1												7			4			1
Liriodendron tulipifera	tulip tree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	shrub																					
Nyssa biflora	swamp tupelo	Tree	2	2	2				2	2	2	1	1	1	2	2	2	4	4	4	3	3	3
Nyssa sylvatica	blackgum	Tree																					
Pinus	pine	Tree																					
Pinus taeda	loblolly pine	Tree																		3			1
Platanus occidentalis	American sycamore	Tree	1	1	1				4	4	4	2	2	2	4	4	4	1	1	1	7	7	7
Populus deltoides	eastern cottonwood	Tree																					
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic																					
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree	1	1	1																		
Quercus pagoda	cherrybark oak	Tree				7	7	7	2	2	2	2	2	2	1	1	1	4	4	4			
Quercus phellos	willow oak	Tree	1	1	1	4	4	4	1	1	1				2	2	2						
Quercus rubra	northern red oak	Tree																					
Rhus copallinum	flameleaf sumac	shrub																					
Salix nigra	black willow	Tree									4			1									
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					
Sambucus canadensis	common elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	6	6	6	3	3	3	2	2	2	7	7	7	4	4	4	2	2	2	2	2	2
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	12	12	15	16	16	16	16	16	20	19	19	22	18	18	34	16	16	20	18	18	19
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	6	6	7	5	5	6	7	7	8	5	5	6	7	7	10	6	6	9	5	5	8
		Stems per ACRE	486	486	607	647	647	647	647	647	809	769	769	890	728	728	1,376	647	647	809	728	728	769

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Exit to most requirements, but less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

													Curren	t Plot D	ata (M\	7 2020)									
Scientific Name	Common Name	Species Type		VP 36			VP 37			VP 38			VP 39			VP 40			VP 41			VP 42			VP 43	
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T
Acer rubrum	red maple	Tree												1			1						8			9
Alnus serrulata	hazel alder	Shrub																								
Baccharis	baccharis	Shrub																								
Baccharis halimifolia	eastern baccharis	Shrub																								
Betula nigra	river birch	Tree	4	4	5	2	2	2	2	2	2	2	2	3	1	1	1	1	1	1	1	1	1	2	2	2
Cephalanthus occidentalis	common buttonbush	Shrub																								
Fraxinus pennsylvanica	green ash	Tree	1	1	1	2	2	2	2	2	2	2	2	2	1	1	1	2	2	2				4	4	4
Ilex opaca	American holly	Tree																								
Juniperus virginiana	eastern red cedar	Tree																							Ī	
Laurus nobilis	sweet bay	Shrub																							Ī	
Ligustrum sinense	Chinese privet	Exotic																							Ī	
Liquidambar styraciflua	sweetgum	Tree			1									1			1						6		1	7
Liriodendron tulipifera	tulip tree	Tree										1									1				1	
Mimosa	sensitive plant	Exotic										1									1			1	1	1
Morella cerifera	wax myrtle	shrub										1									1			1	1	1
Nyssa biflora	swamp tupelo	Tree	1	1	1	2	2	2				1									6	6	6	2	2	2
Nyssa sylvatica	blackgum	Tree										1									1			1	1	1
Pinus	pine	Tree										1									1			1	1	1
Pinus taeda	loblolly pine	Tree			12						6			9			5			1				1	1	1
Platanus occidentalis	American sycamore	Tree	2	2	2	2	2	2				6	6	6	5	5	5	3	3	3				1	1	1
Populus deltoides	eastern cottonwood	Tree										1									1			1	1	1
Prunus serotina	black cherry	Tree																							1	
Pyrus calleryana	Callery pear	Exotic																							1	
Quercus laurifolia	laurel oak	Tree																							1	
Quercus michauxii	swamp chestnut oak	Tree																							1	
Quercus pagoda	cherrybark oak	Tree	1	1	1										1	1	2						1		1	
Quercus phellos	willow oak	Tree	5	5	5	1	1	1				1	1	2	4	4	4	2	2	2	3	3	3		1	
Quercus rubra	northern red oak	Tree										1									1			1	1	1
Rhus copallinum	flameleaf sumac	shrub																							1	
Salix nigra	black willow	Tree												1			3								1	
Salix sericea	silky willow	Shrub																							1	
Sambucus	elderberry	Shrub																							1	
Sambucus canadensis	common elderberry	Shrub																							1	
Taxodium distichum	bald cypress	Tree	3	3	3	3	3	3	5	5	5	4	4	4	5	5	5	6	6	6	1	1	1	4	4	4
Ulmus	elm	Tree																							1	1
Ulmus alata	winged elm	Tree																								1
Ulmus americana	American elm	Tree																							1	
	•	Stem count	17	17	19	12	12	12	9	9	9	15	15	20	17	17	23	14	14	14	11	11	26	12	12	28
		size (ares)		1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	7	7	9	6	6	6	3	3	4	5	5	9	6	6	10	5	5	6	4	4	7	4	4	6
		Stems per ACRE		688	769	486	486	486	364	364	364	607	607	809	688	688	931	567	567	567	445	445	1,052	486	486	1,133

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

													Current	t Plot D	ata (M\	7 2020)									
Scientific Name	Common Name	Species Tune		VP 44			VP 45			VP 46			VP 47			VP 48			VP 49			VP 50			VP 51	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T
Acer rubrum	red maple	Tree			1																					
Alnus serrulata	hazel alder	Shrub																								
Baccharis	baccharis	Shrub																								
Baccharis halimifolia	eastern baccharis	Shrub																								
Betula nigra	river birch	Tree	1	1	1	2	2	2	4	4	4						3	2	2	2	4	4	4	3	3	3
Cephalanthus occidentalis	common buttonbush	Shrub																								
Fraxinus pennsylvanica	green ash	Tree	3	3	3	1	1	1			1	3	3	3	6	6	6				3	3	3	1	1	1
Ilex opaca	American holly	Tree																								
Juniperus virginiana	eastern red cedar	Tree																								
Laurus nobilis	sweet bay	Shrub																								
Ligustrum sinense	Chinese privet	Exotic																								
Liquidambar styraciflua	sweetgum	Tree						9			2			1												1
Liriodendron tulipifera	tulip tree	Tree													1	1	1				2	2	2			
Mimosa	sensitive plant	Exotic																								
Morella cerifera	wax myrtle	shrub																								
Nyssa biflora	swamp tupelo	Tree	7	7	7			1																		
Nyssa sylvatica	blackgum	Tree																								
Pinus	pine	Tree																								
Pinus taeda	loblolly pine	Tree						17			25												5			
Platanus occidentalis	American sycamore	Tree																			1	1	1	3	3	3
Populus deltoides	eastern cottonwood	Tree																								
Prunus serotina	black cherry	Tree																								
Pyrus calleryana	Callery pear	Exotic																								
Quercus laurifolia	laurel oak	Tree																								
Quercus michauxii	swamp chestnut oak	Tree																								
Quercus pagoda	cherrybark oak	Tree							2	2	2	2	2	2	4	4	5			1	2	2	5	4	4	5
Quercus phellos	willow oak	Tree	1	1	1	2	2	2	2	2	2	2	2	3	1	1	1	1	1	1	1	1	1	1	1	1
Quercus rubra	northern red oak	Tree																								
Rhus copallinum	flameleaf sumac	shrub																					12			4
Salix nigra	black willow	Tree																								
Salix sericea	silky willow	Shrub																								
Sambucus	elderberry	Shrub																								
Sambucus canadensis	common elderberry	Shrub																								
Taxodium distichum	bald cypress	Tree				6	6	6	1	1	1							1	1	1						
Ulmus	elm	Tree																								
Ulmus alata	winged elm	Tree																								
Ulmus americana	American elm	Tree																								
		Stem count	12	12	13	11	11	21	9	9	12	7	7	9	12	12	16	4	4	5	13	13	28	12	12	18
		size (ares)		1			1			1			1			1			1		.	1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	1 .		0.02			0.02	
		Species count		4	5	4	4	7	4	4	7	3	3	4	4	4	5	3	3	4	6	6	8	5	5	7
		Stems per ACRE	486	486	526	445	445	850	364	364	486	283	283	364	486	486	647	162	162	202	526	526	1,133	486	486	728

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 9. Planted and Total Stem Counts

Monitoring Year 7 - 2020

														Annua	Means	3										
Scientific Name	Common Name	Species Type	М	Y7 (202	20)	M	Y6 (201	.9)	M	IY5 (201	L8)	IV	1Y4 (20:	17)	М	Y3 (201	L 6)	M	IY2 (20:	15)	IV	IY1 (20	14)	IV	1Y0 (20:	14)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree			43			27			25			8			3			2						
Alnus serrulata	hazel alder	Shrub			6			1						3			4									
Baccharis	baccharis	Shrub									27						32									
Baccharis halimifolia	eastern baccharis	Shrub			50			34			1															
Betula nigra	river birch	Tree	96	96	103	97	97	101	91	91	91	98	98	98	102	102	102	104	104	104	106	106	106	106	106	106
Cephalanthus occidentalis	common buttonbush	Shrub																		2						
Fraxinus pennsylvanica	green ash	Tree	113	113	116	113	113	117	114	114	115	117	117	118	119	119	119	123	123	125	124	124	124	126	126	126
Ilex opaca	American holly	Tree			5																					
Juniperus virginiana	eastern red cedar	Tree			1																					
Laurus nobilis	sweet bay	Shrub			12																					
Ligustrum sinense	Chinese privet	Exotic			4			9			2															
Liquidambar styraciflua	sweetgum	Tree			146			160			132			135			184			86						
Liriodendron tulipifera	tulip tree	Tree	6	6	6	7	7	7	8	8	10	13	13	13	13	13	13	14	14	14	25	25	25	20	20	20
Mimosa	sensitive plant	Exotic						1			4															
Morella cerifera	wax myrtle	shrub									3															
Nyssa biflora	swamp tupelo	Tree	47	47	48	48	48	54	48	48	49	53	53	54	54	54	54	59	59	59	64	64	64	60	60	60
Nyssa sylvatica	blackgum	Tree	5	5	6	6	6	12	6	6	11	7	7	9	8	8	8	8	8	8	9	9	9	10	10	10
Pinus	pine	Tree						159			73			232												
Pinus taeda	loblolly pine	Tree			106			12																		
Platanus occidentalis	American sycamore	Tree	109	109	111	111	111	116	111	111	115	117	117	118	123	123	126	128	128	128	124	124	124	124	124	124
Populus deltoides	eastern cottonwood	Tree			1																					
Prunus serotina	black cherry	Tree									1															
Pyrus calleryana	Callery pear	Exotic			2			3																		
Quercus laurifolia	laurel oak	Tree						1																		
Quercus michauxii	swamp chestnut oak	Tree	23	23	24	23	23	24	25	25	28	57	57	57	60	60	60	77	77	77	91	91	91	108	108	108
Quercus pagoda	cherrybark oak	Tree	40	40	48	40	40	49	44	44	45	12	12	13	12	12	12	12	12	12	14	14	14			
Quercus phellos	willow oak	Tree	70	70	75	70	70	79	66	66	68	71	71	79	77	77	79	97	97	97	104	104	104	125	125	125
Quercus rubra	northern red oak	Tree	1	1	1	1	1	1	1	1	2	1	1	4	1	1	7	1	1	3						
Rhus copallinum	flameleaf sumac	shrub			16			21						2												
Salix nigra	black willow	Tree			36			26			21			38			13									
Salix sericea	silky willow	Shrub																		3						
Sambucus	elderberry	Shrub						1																		
Sambucus canadensis	common elderberry	Shrub			1																					
Taxodium distichum	bald cypress	Tree	186	186	187	186	186	186	185	185	185	186	186	186	189	189	189	190	190	190	189	189	189	206	206	206
Ulmus	elm	Tree									8															
Ulmus alata	winged elm	Tree						1																		
Ulmus americana	American elm	Tree									1															
		Stem count	696	696	992	702	702	984	699	699	910	732	732	935	758	758	973	813	813	910	850	850	850	885	885	885
		size (ares)		51			51			51			51			51			51			51			51	
		size (ACRES)		1.26			1.26			1.26			1.26			1.26			1.26			1.26			1.26	
		Species count	11	11	25	11	11	25	11	11	23	11	11	17	11	11	16	11	11	15	10	10	10	9	9	9
		Stems per ACRE	552	552	787	557	557	781	555	555	722	581	581	742	601	601	772	645	645	722	674	674	674	702	702	702

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

Table 10a. Baseline Stream Data Summary

Monitoring Year 7 - 2020

Devils Racetrack- West

Devils Racetrack- West		1		1										1				1			
		Pre-Restorat	tion Condition					Reference	Reach Data						De	esign			As-Built	/Baseline	
Parameter	Gage	Devil's Race	etrack - West	Scout	West 1	Scou	t East 2	Scout	: West 2	Johan	na Creek	Jarma	an Oak		etrack - West ach 1)		etrack - West ach 2)		etrack - West ach 1)		etrack - West ach 2)
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow																					
Bankfull Width	h (ft)	4.8	8.0	2.6	6.3	4.7	6.1	5.6	7.6		9.7	g	9.3	9	9.0	1	1.5	4.7	9.6	7	7.7
Floodprone Width	n (ft)	7.8	18.0	>	20		>50	>	>50	:	>75	>:	150	100	300	100	300	>	200	>:	200
Bankfull Mean De	epth	0.8	1.2	0.3	0.5	1.1	1.3	0.7	1.0		0.8	1	1.2	(0.6	(0.8	0.4	0.9	(0.5
Bankfull Max De	epth	1.3	1.6	0.5	0.7	1.7	1.8	1.2	1.3		1.1	2	2.3	0.9	1.1	1.1	1.5	1.1	1.4	(0.7
Bankfull Cross Sectional Area	(ft ²) N/A	5.7	6.3	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	1	1.6		5.8	!	9.5	2.1	8.5	4	4.0
Width/Depth R	Ratio	4.0	10.5	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7	7.4	14.0	14.5	1	.4.0	10.6	14.8	1	L4.5
Entrenchment R	Ratio	1.6	2.2	>:	2.2	>	2.2	>	2.2	8.0	9.6	16.1	26.9	11.1	33.3	8.7	26.1	>20.9	>42.5	>2	26.1
Bank Height Ra	atio	1.9	4.5	1.1	1.3		1.0	1.1	1.2		1.0	1	1.0	1.0	1.1	1.0	1.1	1	1.0	1	1.0
D50 (r	mm)	0.	464															l l	I/A	N	N/A
Profile																					
Shallow Length	n (ft)			-														3.7	86.8	7.4	54.2
Shallow Slope (f	ft/ft)			0.026	0.047	1	N/A	0.033	0.051	1	N/A	0.0	0129	0.0036	0.0277	0.0023	0.0072	0.0013	0.0593	0.0008	0.0195
Pool Length	n (ft) N/A			-			N/A N/A N/A					-						5.5	63.1	18.7	72.9
Pool Max Depth	n (ft)	3	1.2	0	.6	1	 N/A	1.7	1.9		1.5	3	3.1	0.9	2.1	1.1	2.5	1.1	2.9	1.4	1.9
Pool Spacing	g (ft)			27	67	1	N/A	21	27	16	59	32	55	14	63	18	81	9	132	38	104
Pool Volume	(ft ³)																				
Pattern							N/A 0 N/A N/A N/A 2 16.2 5 16.0														
Channel Beltwidth	h (ft)			8.7	14.3	7.2	N/A	9.1	9.8	14.0	20.0	21.0	36.0	12.0	72.0	15.0	92.0	13.0	53.0	16.0	73.0
Radius of Curvature	e (ft)			3.1	9.0	5.5	N/A 1.7 N/A 21 16.2 9.1 16.0 5.4	5.4	6.8	15.0	27.0	13.7	18.6	14.0	43.0	17.0	55.0	12.0	40.0	17.0	35.0
Rc:Bankfull Width (f	ft/ft) N/A			0.6	1.6	1.0	N/A 1.7 N/A 21	0.8	1.0	1.5	2.8	1.5	2.0	1.5	4.8	1.5	4.8	2.6	4.2	2.2	4.5
Meander Length	h (ft)			39.8	84.8	36.5	63.2	32.5	36.9	į.	50.0	N	I/A	27	153	35	196	52	133	70	137
Meander Width R	Ratio			1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	8.0	1.3	8.0	2.8	5.5	2.1	9.5
Substrate, Bed and Transport Parameters		•									•		•	•				•	•		
Ri%/Ru%/P%/G%	6/S%																				
SC%/Sa%/G%/C%/B%/E	Be%																				
d16/d35/d50/d84/d95/d	d100	0.168/0.33/0.4	164/1.23/2.0/9.6	-														N	I/A	N	N/A
Reach Shear Stress (Competency) Ib	b/ft ² N/A	0.18	0.23															N	I/A	N	N/A
Max part size (mm) mobilized at bank	kfull																				
Stream Power (Capacity) W	//m²																				
Additional Reach Parameters																					
Drainage Area ((SM)	0	.77	0.	06	C).67	C	0.34	(0.90	1	.27	0	.60	C).70	0	.60	0).70
Watershed Impervious Cover Estimate	2 (%)	<	1%	-				1						<	1%	<	:1%	<	1%	<	<1%
Rosgen Classifica		0	Gc5	E/	C5b		E5	1	E5	Е	5/C5		E6	E	/C5	E	/C5	E,	/C5		С
Bankfull Velocity ((fps)	1.5	1.8	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0	.95	:	1.7		1.2	1.2	4.8	3	3.3
Bankfull Discharge		9.2	10.6	2	.6	1	7.5		6.4	1	14.0	1	1.0	1	0.0	1	.3.0	1	0.0	1	13.0
Q-NFF regress	<u> </u>																				
Q-USGS extrapola						17.5															
Q-Mann																					
Valley Length				-																	
Channel Thalweg Length			976			1		+		+		+			245		966	4.	239	g	962
Sinuc			1.0	1	.1		1.2	†	1.2		1.2	1	1.4	1.2	1.6	1.2	1.6		1.2		1.4
Water Surface Slope (ft,	,																		0054		0015
Bankfull Slope (fr			0041		260		0170		0040		0022		0040	0.0025	0.0087	0.0016	0.0022	0.0053	0.0054	0.0017	0.0023
bankidii siope (ii	919	1 0.0		0.0		·	02/0	U.	00 10	U.		0.0		0.0023	0.0007	0.0010	0.0022	0.0055	0.0054	0.0017	0.0023

Table 10b. Baseline Stream Data Summary

Monitoring Year 7 - 2020

Devils Racetrack- East

Devils Racetrack- East																							
	Pre-Restorat	tion Condition					Reference	Reach Data							De	sign				As-Built	/Baseline		
Parameter Gage		etrack - East		West 1	Scout			West 2		na Creek	Jarman		(Rea	etrack - East ich 1)	(Rea	ach 2)	Devil's Racetrack - Eas (Reach 3)	(Rea	etrack - East ich 1)	(Rea	etrack - East ich 2)	Devil's Race (Rea	ach 3)
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow		1		1			1						1		1				1				
Bankfull Width (ft)	8.1	10.4	2.6	6.3	4.7	6.1	5.6	7.6		9.7	9.3			3.0		3.0	8.0	12.2	13.7		3.2		
Floodprone Width (ft)	14.2	18.6		20	>5			50	>		>15		100	500	100	500	100 500	>3			300		
Bankfull Mean Depth	1.0	1.8	0.3	0.5	1.1	1.3	0.7	1.0).8	1.2			0		0.6		0.8	1.1		1.7		
Bankfull Max Depth	2.1	2.8	0.5	0.7	1.7	1.8	1.2	1.3		.1	2.3		1.4	1.8	0.8	1.0	0.9	1.3	1.7	1			
Bankfull Cross Sectional Area (ft²) N/A	14.2	19.1	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	11.6			2.8		1.8		10.3	13.9		.7		
Width/Depth Ratio	5.0	7.8	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7.4		13.0	13.5	14.0	14.5		12.1	14.6		1.9		
Entrenchment Ratio	1.6	1.8		2.2	>2			2.2	8.0	9.6	16.1	26.9	7.7	38.5	12.5	62.6		>21.9	>24.5		6.5		
Bank Height Ratio	2.6	4.3	1.1	1.3	1.	.0	1.1	1.2	1	1.0	1.0		1.0	1.1	1.0	1.1			0		0		
D50 (mm)	0.	179																N N	/A	N	/A		
Profile			ī		ī		ı				ī		I		ı		1	1					
Shallow Length (ft)																 T		13.0	80.1	20.8	42.4	11.3	25.9
Shallow Slope (ft/ft)			0.026	0.047	N/		0.033	0.051		I/A	0.012		0.0007	0.0025	0.0377	0.0671		0.0004	0.0099	0.0192	0.0318	0.0072	0.0675
Pool Length (ft) N/A).6	 N/					 l.5	3.1		-		0.8		1.2	16.0	77.3	16.5	66.1	13.0	34.2
Pool Max Depth (ft)			27	67			1.7	1.9 27			32		1.4	3.2		2.0 64		1.9	3.4	1.7 43	2.7	1.4 25	2.5
Pool Spacing (ft)			21	67	N/	'A	21	27	16	59	32	55	21	91	39	64		26	131	43	73	25	70
Pool Volume (ft ³) Pattern																							
Channel Beltwidth (ft)			8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	17.0	65.0	10.0	40.0		15.0	55.0	21	41	12	32
Radius of Curvature (ft)			3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7	18.6	20.0	62.0	12.0	36.0		18.0	65.0	12	26	10	35
Radius of Curvature (11) Rc:Bankfull Width (ft/ft) N/A			0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.5	4.8	1.5	4.5		1.5	4.7	1.5	3.2	10	
Meander Length (ft)			39.8	84.8	36.5	63.2	32.5	36.9		0.0	1.5 N/A		39	221	64	136		62	203	101	140	52	112
Meander Width Ratio			1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	5.0	1.3	5.0		1.2	4.0	2.6	5.0	32	
Substrate, Bed and Transport Parameters			1.0	2.0	1.5	3.0	1.7	1.5	1.4	2.1	2.3	2.3	1.3	3.0	1.5	3.0		1.2	7.0	2.0	3.0		
Ri%/Ru%/P%/G%/S%																							
SC%/Sa%/G%/C%/B%/Be%																							
416/425/450/494/405/4100	-/-/0.179/0	0.642/1.0/9.6	_			_	_		-									N	/A	N	/A	N,	/A
Reach Shear Stress (Competency) lb/ft ²		.01											-						/A		/A		i/A
Max part size (mm) mobilized at bankfull																					,		
Stream Power (Capacity) W/m ²																							
Additional Reach Parameters																							
Drainage Area (SM)	1	.30	0.	.06	0.6	67	0.	34	0.	.90	1.27	7	1.	.14	1	.30		1.	14	1	.30	-	
Watershed Impervious Cover Estimate (%)	<	1%	-			_	-		-				<:	1%	<	1%	<1%	<	1%	<	1%	<1	1%
Rosgen Classification	G	Gc5	E/4	C5b	E.	5	E	5	E5,	/C5	E6		E/	′C5	E,	/C5	E/C5		С		С	-	
Bankfull Velocity (fps)	0.3	0.4	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0.95	5	1	2	3	3.5		1.2	1.6	3	.0	-	
Bankfull Discharge (cfs)	8	3.5	2	2.6	17	.5	6	.4	14	4.0	11.0)	16	5.0	1	7.0		10	5.0	1	7.0	-	
Q-NFF regression																							
Q-USGS extrapolation N/A																							
Q-Mannings																							
Valley Length (ft)			-			-	-		-				-										
Channel Thalweg Length (ft)	4,	844	-			-	-		-				4,8	840	3	313	385	4,8	833	3	10	37	72
Sinuosity	1	1.0	1	l. 1	1.	2	1	.2	1	1.2	1.4		1.1	1.3	1.1	1.2		1	1	1	1	1.	.1
Water Surface Slope (ft/ft) ²			-			-	-		-									-				-	
Bankfull Slope (ft/ft)	0.0	0003	0.0)260	0.02	170	0.0	040	0.0	0022	0.004	10	0.0004	0.0008	0.0224	0.0251		0.0007	0.0008	0.0153	0.0166	0.0219	0.0231
(): Data was not provided						•						•					•						

Table 10c. Baseline Stream Data Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Southeast Branch

Southeast Branch																								
	Pre-Restorat	ion Condition					Reference	Reach Data							De	sign					As-Built,	Baseline		
Parameter Gage	Southea	st Branch	Scout	West 1	Scout	East 2	Scout	West 2	Johanna	a Creek	Jarman Oa		Southeas (Rea	ch 1)		st Branch ach 2)	(Rea	st Branch ach 3)		ich 1)	(Rea	st Branch ch 2)		st Branch ach 3)
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Vlax	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow																								
Bankfull Width (ft)	2.7	5.7	2.6	6.3	4.7	6.1	5.6	7.6	9.		9.3		3.	.0	4	1.0	5	.4		.0		.8		5.3
Floodprone Width (ft)	8.6	11.4	>	20	>5	50		50	>7		>150		25	35	50	70	100	300		30		60		200
Bankfull Mean Depth	0.2	0.4	0.3	0.5	1.1	1.3	0.7	1.0	0.		1.2			.5		0.6	1	0		.3		.4		0.4
Bankfull Max Depth	0.4	1.4	0.5	0.7	1.7	1.8	1.2	1.3	1.		2.3		0.4	0.6	0.5	0.7	0.8	1.2		.5		.5		0.6
Bankfull Cross Sectional Area (ft ²) N/A	1.1	1.4	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	11.6		1.	.0	1	5	2	1.5		.8	1			2.1
Width/Depth Ratio	6.8	24.3	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7.4		9.0	10.0	10.0	12.0	11.0	12.0		1.4		0.8		3.8
Entrenchment Ratio	1.5	4.2		2.2	>2			2.2	8.0	9.6		26.9	8.3	11.7	12.5	17.5	18.5	55.6	>9		>1			37.5
Bank Height Ratio	2.2	6.0	1.1	1.3	1.	0	1.1	1.2	1.	.0	1.0		1.0	1.1	1.0	1.1	1.0	1.2		.0	1			1.0
D50 (mm)	0.4	409																	N,	/A	N	/A	N	I/A
Profile																								
Shallow Length (ft)			-			=							-				-		2.1	64.4	3.4	144.4	6.0	47.3
Shallow Slope (ft/ft)			0.026	0.047	N/	′A	0.033	0.051	N/	/A	0.0129		0.0162	0.0681	0.0144	0.0384	0.0035	0.0285	0.0010	0.0803	0.0021	0.0272	0.0005	0.0168
Pool Length (ft) N/A																			2.1	36.7	3.1	33.6	3.2	61.3
Pool Max Depth (ft)).4		0.6	N/		1.7	1.9	1.		3.1		0.5	1.1	0.4	1.2	0.5	1.5	0.7	1.5	0.5	1.0	0.5	1.1
Pool Spacing (ft)	-		27	67	N/	<u>′</u> A	21	27	16	59	32	55	15	24	20	32	9	38	4	76	8	90	14	52
Pool Volume (ft ³)																								
Pattern					1		T		T				,		•	•	T	,	T	T		,		
Channel Beltwidth (ft)			8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0		36.0	4.0	9.0	5.0	12.0	7.0	43.0	5.3	11.2	6.8	14.3	12.7	32.8
Radius of Curvature (ft)	-		3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0		18.6	5.0	14.0	6.0	18.0	8.0	26.0	5.0	23.5	10.0	25.6	10.4	29.5
Rc:Bankfull Width (ft/ft) N/A			0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8		2.0	1.5	4.5	1.5	4.5	1.5	4.8	1.7	7.8	2.6	6.7	2.0	5.6
Meander Length (ft)			39.8	84.8	36.5	63.2	32.5	36.9		0.0	N/A		24	51	32	68	16	92	22	63	33	70	32	74
Meander Width Ratio	-		1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	3.0	1.3	3.0	1.3	8.0	1.8	3.7	1.8	3.8	2.4	6.2
Substrate, Bed and Transport Parameters							l										l			l				
Ri%/Ru%/P%/G%/S% SC%/Sa%/G%/C%/B%/Be%																								
d16/d35/d50/d84/d95/d100	0.09/0.39/0.4	1/0.94/1.6/9.6																			N	/^		I/A
		.51			-	-	_		-	-								<u> </u>	N	/A		/A		I/A
Reach Shear Stress (Competency) lb/ft ² Max part size (mm) mobilized at bankfull	0.	.51												-					IV,	/A	l 'N	/A	IN,	/A
Stream Power (Capacity) W/m ²																								
Additional Reach Parameters																								
Drainage Area (SM)	0	.19	0	.06	0.6	57	0	34	0.9	90	1.27		0.0	03		.07	0	.10	0.	03	0	07	0	.10
Watershed Impervious Cover Estimate (%)		1%												L%		1%		1%		1%		1%		1%
Rosgen Classification		/F5	E/0	C5b	E	5	E	5	E5/	/C5	E6		_					/C5	E/			C5		/C5
Bankfull Velocity (fps)		2.2	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0.95		1.	.7		.4		4		.9		.5		1.4
Bankfull Discharge (cfs)		2.4		2.6	17			.4	14		11.0		1.			2.0		3.0		.5		.0		3.0
Q-NFF regression			_			<u></u>								-										
Q-USGS extrapolation N/A																								
Q-Mannings	-																							
Valley Length (ft)	-		-				-			-				-			-							
Channel Thalweg Length (ft)	2,9	976	-			-	-						1,5	559		16	6	17	1,5	559	7	13	6	516
Sinuosity		0		1.1	1.	2	1	.2	1.	.2	1.4		1.1	1.2	1.1	1.2	1.2	1.6		.6	1			1.3
Water Surface Slope (ft/ft) ²									-											221		174		0030
Bankfull Slope (ft/ft)	0.0)230	0.0	0260	0.01	170	0.0	040	0.00	022	0.0040		0.0108	0.0227	0.0096	0.0128	0.0025	0.0089	0.0	222	0.0015	0.0119	0.0028	0.0030
(): Data was not provided											I					•		•						

Table 10d. Baseline Stream Data Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Middle Branch

Middle Branch	1		1										1				_			
	Pre-Restora	tion Condition					Reference	Reach Data						De	esign			As-Built	/Baseline	
Parameter Gage	Middle	e Branch	Scout	West 1	Scou	t East 2	Scout	West 2	Johan	nna Creek	Jarm	an Oak		e Branch ach 1)		e Branch ach 2)		e Branch ach 1)		e Branch each 2)
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow			r	1		1			1						_					
Bankfull Width (ft)	1.8	2.3	2.6	6.3	4.7	6.1	5.6	7.6	1	9.7		9.3		3.0		4.0		2.2		3.4
Floodprone Width (ft)	4.6	6.8		20		·50		>50		>75		150	40	60	100	300		>50		>200
Bankfull Mean Depth	0.2	0.3	0.3	0.5	1.1	1.3	0.7	1.0	1	0.8		1.2		0.3	_	0.3		0.3		0.3
Bankfull Max Depth	0.3	0.6	0.5	0.7	1.7	1.8	1.2	1.3		1.1		2.3	0.4	0.5	0.5	0.6		0.5		0.5
Bankfull Cross Sectional Area (ft ²) N/A	0.4	0.5	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8		1.6		0.9		1.5		0.7		1.1
Width/Depth Ratio	6.9	12.0	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7		7.4	10.0	10.5	10.0	12.0		6.7		10.1
Entrenchment Ratio	2.0	3.8		2.2		2.2		2.2	8.0	9.6	16.1	26.9	33.3	100.0	22.2	66.7		22.9		58.8
Bank Height Ratio	5.3	6.5	1.1	1.3	:	1.0	1.1	1.2		1.0	1	1.0	1.0	1.1	1.0	1.1		1.0		1.0
D50 (mm)	0.	.083															ı	N/A	ı	N/A
Profile																				
Shallow Length (ft)																	2.5	46.6	7.9	16.1
Shallow Slope (ft/ft)			0.026	0.047	N	I/A	0.033	0.051		N/A	0.0	0129	0.0144	0.0489	0.0002	0.0074	0.0008	0.0492	0.0059	0.0236
Pool Length (ft) N/A																	2.9	17.3	11.2	19.8
Pool Max Depth (ft)			0			I/A	1.7	1.9		1.5	3	3.1	0.4	1.0	0.5	1.0	0.5	1.2	0.6	0.9
Pool Spacing (ft)			27	67	١	I/A	21	27	16	59	32	55	15	24	5	22	8	56	18	24
Pool Volume (ft ³)																				
Pattern																				
Channel Beltwidth (ft)			8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	4.0	9.0	6.0	36.0	4.1	9.4	6.7	20.9
Radius of Curvature (ft)			3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7	18.6	5.0	14.0	7.0	22.0	7.0	23.9	9.2	23.5
Rc:Bankfull Width (ft/ft) N/A			0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.7	4.5	1.5	4.8	3.2	10.9	2.7	6.9
Meander Length (ft)			39.8	84.8	36.5	63.2	32.5	36.9		50.0	N	I/A	24	51	14	77	23	44	32	57
Meander Width Ratio			1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	3.0	1.3	8.0	2.2	4.3	2.0	6.1
Substrate, Bed and Transport Parameters																				
Ri%/Ru%/P%/G%/S%																				
SC%/Sa%/G%/C%/B%/Be%																				
d16/d35/d50/d84/d95/d100 N/A	-/-/0.083/0	0.498/0.9/9.6	-														l l	N/A	1	N/A
Reach Shear Stress (Competency) lb/ft ²	0.24	0.27															N	N/A	ı	N/A
Max part size (mm) mobilized at bankfull																				
Stream Power (Capacity) W/m ²																				
Additional Reach Parameters																				
Drainage Area (SM)	C	0.02	0.	06	C	.67	C	.34		0.90	1	.27	C	.01	0	0.01	0	0.01	(0.01
Watershed Impervious Cover Estimate (%)	<	<1%	-										<	1%	<	<1%	<	1%		<1%
Rosgen Classification		G5	E/	C5b		E5		E5	E	5/C5		E6	1	I/A	E	:/C5	E	/C5	E	E/C5
Bankfull Velocity (fps)	1.4	1.5	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0	.95		1.3		0.8		1.4		0.9
Bankfull Discharge (cfs)	0.6	0.7	2	.6	1	7.5		6.4		14.0	1	1.0		1.0		1.0		1.0		1.0
Q-NFF regression																				
Q-USGS extrapolation N/A																				
Q-Mannings																				
Valley Length (ft)			-														g	985		
Channel Thalweg Length (ft)	1	,736	-								1		1.	060	4	436		,058	4	432
Sinuosity		1.0	1	.1		1.2	1	1.2	1	1.2	1	1.4	1.1	1.2	1.2	1.5		1.1		1.2
Water Surface Slope (ft/ft) ²																		0145		.0064
Bankfull Slope (ft/ft)		0240		260		0170		0040		1.0022		0040	0.0096	0.0163	0.0024	0.0077		0148	0.0024	0.0066
(): Data was not provided	0.	0270	0.0	200	0.0	J1, U	0.0	JU-10		.0022	0.0	JU-1J	0.0030	0.0103	0.0024	0.0077	0.0	U17U	0.0024	0.0000

Table 10e. Baseline Stream Data Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Southwest Branch

Southwest Branch	1		1										1				ı			
	Pre-Restora	tion Condition					Reference	Reach Data						De	esign			As-Built	/Baseline	
Parameter Gage	Southwe	est Branch	Scout	West 1	Scou	t East 2	Scout	: West 2	Johan	nna Creek	Jarm	an Oak		est Branch nes 1 - 3)		est Branch ach 4)		est Branch hes 1 - 3)		est Branch each 4)
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow							_													
Bankfull Width (ft)	2.8	3.4	2.6	6.3	4.7	6.1	5.6	7.6		9.7		9.3		3.0		3.3	1		1	2.4
Floodprone Width (ft)	4.9	6.2		20		>50		>50		>75		150	40	60	100	300				>200
Bankfull Mean Depth	0.2	0.3	0.3	0.5	1.1	1.3	0.7	1.0		0.8		1.2		0.3	_	0.3				0.3
Bankfull Max Depth	0.3	0.9	0.5	0.7	1.7	1.8	1.2	1.3		1.1		2.3	0.5	0.6	0.4	0.5	1			0.4
Bankfull Cross Sectional Area (ft ²) N/A	0.8	0.9	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8		1.6		1.0		1.0	1			0.6
Width/Depth Ratio	10.0	14.0	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7		7.4	9.0	10.0	10.0	12.0	1			9.7
Entrenchment Ratio	1.5	1.9		2.2		2.2		2.2	8.0	9.6	16.1	26.9	13.3	20.0	30.3	90.9				82.3
Bank Height Ratio	10.0	10.7	1.1	1.3	:	1.0	1.1	1.2		1.0	1	1.0	1.0	1.1	1.0	1.1				1.0
D50 (mm)	0.	.105																	N	N/A
Profile							_													
Shallow Length (ft)																	3.8	51.6	8.3	44.1
Shallow Slope (ft/ft)			0.026	0.047	N	N/A	0.033	0.051		N/A	0.0	0129	0.0257	0.0648	0.0109	0.0308	0.0015	0.0339	0.0032	0.0228
Pool Length (ft) N/A																	1.7	19.9	4.3	23.4
Pool Max Depth (ft)			0			N/A	1.7	1.9		1.5	3	3.1	0.5	1.1	0.4	1.0	0.3	1.2	0.6	1.4
Pool Spacing (ft)			27	67	١	N/A	21	27	16	59	32	55	15	24	5	23	8	53	12	51
Pool Volume (ft ³)																				
Pattern																				
Channel Beltwidth (ft)			8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	4.0	9.0	4.0	26.0	3.9	10.2	5.2	18.9
Radius of Curvature (ft)			3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7	18.6	5.0	14.0	5.0	16.0	10.0	19.0	7.4	20.3
Rc:Bankfull Width (ft/ft) N/A			0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.7	4.5	1.5	4.8			3.1	8.5
Meander Length (ft)			39.8	84.8	36.5	63.2	32.5	36.9		50.0	N	I/A	24	51	10	56	27	50	28	54
Meander Width Ratio			1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	3.0	1.3	8.0			2.2	7.9
Substrate, Bed and Transport Parameters																				
Ri%/Ru%/P%/G%/S%																				
SC%/Sa%/G%/C%/B%/Be%																				
d16/d35/d50/d84/d95/d100 N/A	-/0.065/0.10	5/0.336/0.4/9.6	-														1	N/A	l l	N/A
Reach Shear Stress (Competency) lb/ft ²	0.37	0.42															ı	N/A	N	N/A
Max part size (mm) mobilized at bankfull																				
Stream Power (Capacity) W/m ²																				
Additional Reach Parameters																				
Drainage Area (SM)	C	0.03	0.	06	C	.67	0).34		0.90	1	.27	C	.02	C	0.02	(0.02	0	0.02
Watershed Impervious Cover Estimate (%)	<	1%	-										<	1%	<	<1%		<1%	<	<1%
Rosgen Classification		G5	E/	C5b		E5		E5	E	5/C5		E6		NA	E	E/C5	1	N/A	E	E/C5
Bankfull Velocity (fps)	1.8	1.9	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0	.95		1.7		1.3	1	N/A		2.5
Bankfull Discharge (cfs)	1.6	1.7	2	.6	1	7.5	(6.4		14.0	1	1.0		1.5		1.5		1.5	:	1.5
Q-NFF regression																				
Q-USGS extrapolation N/A																				
Q-Mannings																				
Valley Length (ft)			-																	
Channel Thalweg Length (ft)	1	,080	-						1		1		6	550	4	482		546	4	479
Sinuosity		1.0	1	.1		1.2		1.2	1	1.2	1	1.4	1.1	1.2	1.1	1.5		1.0		1.3
Water Surface Slope (ft/ft) ²															T			0191		.0090
Bankfull Slope (ft/ft)		0320		260		0170		0040	1	.0022		0040	0.0171	0.0216	0.0078	0.0096	0.0186	0.0191	0.0085	0.0088
(): Data was not provided	0.		0.0		0.0		0.0				0.0		0.01/1	0.0210	0.0070	0.0050	0.0100	0.0131	0.0003	0.0000

Table 10f. Baseline Stream Data Summary

Monitoring Year 7 - 2020

North Branch

North Branch													_			
		Pre-Restoration Condition					Reference F	Reach Data					De	esign	As-Built	/Baseline
Parameter	Gage	North Branch	Scout V	Vest 1	Scout	East 2	Scout \	Vest 2	Johann	a Creek	Jarma	n Oak	North	Branch	North	Branch
		Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow	1		1		ı				1				1			1
Bankfull Width (ft)			2.6	6.3	4.7	6.1	5.6	7.6		i.7	9.			9.2	8.6	9.3
Floodprone Width (ft)			>2			50	>5			75	>1		100	300		200
Bankfull Mean Depth			0.3	0.5	1.1	1.3	0.7	1.0		1.8	1.			0.6	0.7	0.7
Bankfull Max Depth			0.5	0.7	1.7	1.8	1.2	1.3		.1	2.		0.9	1.1	1.0	1.2
Bankfull Cross Sectional Area (ft²)	N/A		1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	11			5.9	5.7	6.5
Width/Depth Ratio			5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7.		14.0	14.5	13.1	13.2
Entrenchment Ratio			>2		>2	.0	>2		8.0	9.6	16.1 1.	26.9	10.9	32.6	>21.6	>23.2
Bank Height Ratio			1.1	1.3	1	.0	1.1	1.2	1	0	1.	.0	1.0	1.1		.0 /A
D50 (mm) Profile															IN	/A
	l	T .	1		I		T		1		1		1		F 2	35.0
Shallow Length (ft)			0.026		-		0.022			/^			0.0010		5.3 0.0013	35.8
Shallow Slope (ft/ft)			0.026	0.047	IN,	/A	0.033	0.051		/A 	0.03			0.0065	8.5	0.0163 80.8
Pool Length (ft) Pool Max Depth (ft)	N/A		0.			/A	1.7	1.9		5	3.		0.9	2.1	1.0	3.8
Pool Spacing (ft)			27	67		/A /A	21	27	16	5	32	55	15	64	1.0	101
Pool Volume (ft ³)			27	67	IV,	/A	21	21	16	39	32	33	15	04	17	101
Pool Volume (ft) Pattern																
Channel Beltwidth (ft)	ı		8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	12.0	74.0	16	72
Radius of Curvature (ft)			3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7	18.6	14.0	44.0	15	40
Radius of Curvature (it) Rc:Bankfull Width (ft/ft)	N/A		0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.5	4.8	1.7	4.3
Meander Length (ft)	IN/A		39.8	84.8	36.5	63.2	32.5	36.9		0.0	1.5 N/		28	156	79	129
Meander Width Ratio			1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	8.0	1.9	7.7
Substrate, Bed and Transport Parameters			1.0	2.0	1.5	3.0	1.4	1.5	1.4	2.1	2.5	2.9	1.5	8.0	1.9	7.7
Ri%/Ru%/P%/G%/S%	1															
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100				-	_		-	_							N	/A
Reach Shear Stress (Competency) lb/ft²	N/A															/A
Max part size (mm) mobilized at bankfull															1.	// /
Stream Power (Capacity) W/m ²																
Additional Reach Parameters	I															
Drainage Area (SM)		0.08	0.0	06	0.	67	0.3	34	0	.90	1.2	27	T 0	.19	0	.19
Watershed Impervious Cover Estimate (%)		<1%			-									1%		1%
Rosgen Classification		N/A	E/C	5b		5	E.	5	E5	/C5	E	6		/C5		C5
Bankfull Velocity (fps)			1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0.9			0.9	0.8	0.9
Bankfull Discharge (cfs)			2.		17		6.			4.0	11	0		5.0		i.0
Q-NFF regression																
Q-USGS extrapolation	N/A															
Q-Mannings																
Valley Length (ft)	1			-	-	-		-	-			-				
Channel Thalweg Length (ft)				-	-			-	-			-	2,	418	2,	410
Sinuosity			1.	1	1	.2	1.	2	1	2	1.	4	1.2	1.6		.31
Water Surface Slope (ft/ft) ²	1			-	-			-	-			-			0.0	016
Bankfull Slope (ft/ft)			0.02	260	0.0	170	0.00)40	0.0	022	0.00	040	0.0007	0.0020	0.0004	0.0020

Table 11a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)
Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

Devil's Racetrack (West)

Devil's Racetrack (West)																																
			Cross	Sectio	n 1 (Sh	allow)					Cro	ss Secti	ion 2 (F	ool)					Cross	Sectio	n 3 (Sha	allow)					Cro	ss Secti	on 4 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	135.4	135.4	135.4	135.4	135.4	135.5	135.5	135.5	135.1	135.1	135.1	135.1	135.1	135.2	135.0	135.0	131.0	131.0	131.0	131.0	131.0	131.2	131.0	130.9	130.6	130.6	130.6	130.6	130.6	130.8	130.7	130.7
Low Bank Elevation (ft)	135.4	135.4	135.4	135.4	135.4	135.4	135.5	135.5	135.1	135.1	135.1	135.1	135.1	135.1	135.0	135.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	130.9	130.6	130.6	130.6	130.6	130.6	130.6	130.7	130.7
Bankfull Width (ft)	9.6	7.6	7.7	7.6	7.8	9.0	9.0	8.8	10.7	10.1	10.2	9.8	9.2	8.1	7.2	7.1	9.5	10.0	10.0	10.0	9.3	10.0	8.8	9.7	11.1	11.4	11.4	11.4	11.2	11.8	11.4	11.7
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200	>200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>200	>200	>200	>200	>200	>200	>200	>200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Mean Depth (ft)	0.6	0.7	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.9	1.0	0.9	1.0	0.9	0.8	0.8	0.7	0.8	0.8	0.7	0.6	1.0	0.8	0.9	0.8	0.7	0.9	0.8	0.8
Bankfull Max Depth (ft)	1.1	1.5	1.5	1.4	1.4	1.3	1.4	1.4	1.7	1.9	2.0	1.9	2.0	1.8	1.6	1.6	1.4	1.4	1.4	1.4	1.4	1.5	1.3	1.2	1.7	1.7	1.7	1.7	1.6	1.7	1.6	1.6
Bankfull Cross Sectional Area (ft ²)	6.2	5.6	5.8	5.8	5.3	6.2	6.0	5.8	7.8	7.6	8.6	8.1	8.1	7.8	6.7	6.7	8.5	8.1	8.2	7.4	7.1	8.5	6.2	5.7	10.7	9.4	9.9	8.6	8.0	10.7	9.0	9.0
Bankfull Width/Depth Ratio	14.8	10.4	10.1	10.0	11.5	13.2	13.6	13.2	14.6	13.4	12.2	12.0	10.6	8.4	7.7	7.4	10.6	12.3	12.2	13.5	12.1	11.8	12.4	16.6	11.4	13.9	13.1	15.1	15.6	13.0	14.4	15.2
Entrenchment Ratio ¹	>20.9	>26.2	>26.1	>26.3	>25.7	>22.2	>22.1	>22.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>21.1	>20.0	>20.1	>20.0	>21.5	>20.0	>22.7	>20.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cro	ss Secti	ion 5 (F	ool)					Cross	Sectio	n 6 (Sh	allow)					Cro	ss Secti	ion 7 (P	ool)					Cross	Section	n 8 (Sha	llow)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6		Base		MY2	MY3	MY4	MY5	-	
Bankfull Elevation (ft)	125.3	125.3	125.3	125.3	125.3	125.4	125.3	125.3	124.7	124.7	124.7	124.7	124.7	124.9	124.8	124.8	120.8	120.8	120.8	120.8	120.8	120.9	120.8			119.9	119.9	119.9	119.9	119.4		120.0
Low Bank Elevation (ft)	125.3	125.3	125.3	125.3			125.3		124.7	124.7	124.7	124.7	124.7	124.9	124.8	124.8	120.8	120.8		120.8		120.8		120.8	119.9		119.9	119.9	119.9		120.1	120.0
Bankfull Width (ft)	8.9	8.6	8.6	8.6	9.3	10.1	10.3	10.7	8.7	8.2	8.6	8.5	8.0	9.1	8.2	8.7	9.5	8.0	8.0	8.7	8.7	10.3	8.4	9.1	4.7	4.8	4.8	4.2	4.2	2.8	4.7	3.9
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>200	>200	>200	>200	>200	>200	>200	>200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>200	>200	>200	>200	>200	>200	>200	>200
Bankfull Mean Depth (ft)	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.6	0.7	0.7	0.6	0.6	0.5	0.7	0.6	0.6	0.8	0.9	0.9	0.8	0.8	0.7	0.7	0.7	0.4	0.7	1.2	0.8	1.0	0.8	0.9	1.0
Bankfull Max Depth (ft)	1.5	1.5	1.5	1.5	1.4	1.4	1.4	1.4	1.1	1.2	1.2	1.1	1.0	1.2	1.0	1.0	1.6	1.7	1.7	1.7	1.8	1.8	1.5	1.6	1.3	1.3	1.7	1.2	1.7	1.0	1.5	1.5
Bankfull Cross Sectional Area (ft ²)	7.5	7.0	6.8	6.2	6.5	7.5	7.0	6.7	6.0	5.3	5.6	5.2	4.3	6.0	4.6	4.8	7.6	7.4	7.3	7.0	7.0	7.6	5.9	6.5	2.1	3.3	5.7	3.3	4.4	2.1	4.0	3.8
Bankfull Width/Depth Ratio	10.7	10.6	10.9	11.9	13.4	13.5	15.2	17.2	12.6	12.6	13.4	14.0	14.7	13.7	14.7	15.7	11.7	8.7	8.8	10.8	10.8	13.8	11.9	12.6	10.6	6.9	4.0	5.4	4.0	3.7	5.5	4.0
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>23.0	>24.4	>23.2	>23.5	>25.1	>22.1	>24.3	>22.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>42.5	>42.1	>41.9	>47.4	>47.4	>71.9	>42.3	>51.7
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	2.0	1.5	1.6
			Cross	Sectio	n 9 (Sh	allow)					Cros	s Secti	on 10 (I	Pool)																		
Dimension and Substrate	Base	MY1	MY2			MY5			Base																							
Bankfull Elevation (ft)	116.4	116.4	116.4	116.4	116.4	116.3	116.4	116.3	116.1	116.1	116.1	116.1	116.1	116.1	116.1	116.2]															
Low Bank Elevation (ft)	116.4	116.4	116.4	116.4	116.4	116.4	116.4	116.3	116.1	116.1	116.1	116.1	116.1	116.1	116.1	116.2]															
Bankfull Width (ft)	7.7	7.5	7.5	7.5	7.5	7.9	8.8	8.8	6.8	5.9	5.9	6.2	6.0	7.9	7.0	7.2																

N/A N/A N/A N/A N/A N/A

0.8 0.8 0.7 0.7 0.6 0.5 0.6

1.0 1.0 1.0 0.9 0.9 0.8 0.9

4.7 4.6 4.5 4.0 4.4 3.7 4.2

7.5 7.6 8.5 9.0 14.0 13.5 12.2

N/A N/A N/A N/A N/A N/A

N/A N/A N/A

0.5

>200 >200 >200 >200 >200

0.7 0.7 0.6

0.7 1.0 1.0 1.1 1.0

14.5 10.4 11.4 12.1 12.4

>26.1 >26.7 >26.7 >26.7 >26.7

4.0 5.4 4.9 4.7

0.6

4.6

>200 >200 >200

4.0 4.1 3.9

15.5 18.7 19.8

>25.4 >22.8 >22.6

0.5 0.5 0.4 0.6

0.9 1.0 0.8 0.9

4.4

10.6

N/A

N/A N/A N/A N/A

Floodprone Width (ft)

Bankfull Mean Depth (ft)

Bankfull Max Depth (ft)

Entrenchment Ratio¹

Bankfull Width/Depth Ratio

Bankfull Cross Sectional Area (ft2)

Bankfull Bank Height Ratio² 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 N/A

Entrenchment Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

Table 11b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Monitoring Year 7 - 2020

Doville Pacetrack (East)

Devil's Racetrack (East)																																
			Cro	ss Secti	on 11 (Pool)					Cross	Section	n 12 (Sh	nallow)					Cros	s Sectio	on 13 (F	Pool)					Cross	Section	14 (Sh	allow)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	115.4	115.4	115.4	115.4	115.4	115.5	115.2	115.2	115.1	115.1	115.1	115.1	115.1	115.3	115.2	115.1	115.0	115.0	115.0	115.0	115.0	115.3	114.9	114.9	114.6	114.6	114.6	114.6	114.6	114.9	114.6	114.7
Low Bank Elevation (ft)	115.4	115.4	115.4	115.4	115.4	115.3	115.2	115.2	115.1	115.1	115.1	115.1	115.1	115.0	115.2	115.1	115.0	115.0	115.0	115.0	115.0	115.0	114.9	114.9	114.6	114.6	114.6	114.6	114.6	114.6	114.6	114.7
Bankfull Width (ft)	15.0	15.1	15.1	15.1	15.1	14.0	14.6	14.6	12.2	12.5	12.3	12.2	12.2	12.7	12.7	12.8	19.8	20.5	20.8	21.1	21.8	22.2	20.8	21.3	12.7	11.8	12.4	12.2	12.0	12.6	11.9	11.7
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>300	>300	>300	>300	>300	>300	>300	>300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>300	>300	>300	>300	>300	>300	>300	>300
Bankfull Mean Depth (ft)	1.2	1.1	1.1	1.1	1.1	1.3	0.9	0.9	0.8	0.7	0.8	0.7	0.7	0.8	0.7	0.6	1.5	1.2	1.3	1.1	1.1	1.4	1.0	1.0	1.1	0.9	0.9	0.9	0.9	1.1	0.8	0.9
Bankfull Max Depth (ft)	2.1	2.0	2.0	2.5	2.0	2.2	1.8	1.9	1.3	1.3	1.3	1.2	1.3	1.4	1.3	1.3	2.7	2.5	2.5	2.3	2.5	2.7	2.2	2.3	1.6	1.6	1.6	1.5	1.6	1.8	1.6	1.7
Bankfull Cross Sectional Area (ft ²)	18.8	16.5	17.3	16.1	15.9	18.8	12.8	13.4	10.3	8.9	9.3	8.0	8.4	10.3	8.6	8.1	30.2	24.6	26.2	23.2	23.2	30.2	20.2	20.8	13.3	10.4	10.9	10.5	10.6	13.3	10.1	10.8
Bankfull Width/Depth Ratio	12.0	13.8	13.1	14.2	14.3	10.4	16.7	15.9	14.6	17.6	16.1	18.6	17.6	15.7	18.8	20.2	13.0	17.1	16.6	19.2	20.5	16.3	21.4	21.9	12.1	13.4	14.0	14.1	13.7	11.9	14.0	12.7
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>24.5	>23.9	>24.5	>24.5	>24.6	>23.6	>23.6	>23.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>23.7	>25.4	>24.3	>24.6	>24.9	>23.8	>25.2	>25.6
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0
0			Cro	ss Secti	on 15 (Pool)					Cross	Section	n 16 (Sh	nallow)					Cross	Section	17 (Sh	allow)					Cros	ss Section	on 18 (F	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	114.2	114.2	114.2	114.2	114.2	114.5	114.2	114.2	114.1	114.1	114.1	114.1	114.1	114.3	114.3	114.4	113.3	113.3	113.3	113.3	113.3	113.4	113.4	113.3	112.6	112.6	112.6	112.6	112.6	113.0	112.6	112.5
Low Bank Elevation (ft)	114.2	114.2	114.2	114.2	114.2	114.1	114.2	114.2	114.1	114.1	114.1	114.1	114.1	114.4	114.3	114.4	113.3	113.3	113.3	113.3	113.3	113.3	113.4	113.3	112.6	112.6	112.6	112.6	112.6	112.5	112.6	112.5
Bankfull Width (ft)	15.6	12.4	12.4	12.4	12.3	13.2	15.3	14.5	13.4	12.6	12.7	12.4	12.4	13.8	14.6	14.1	13.7	12.5	12.7	12.7	13.6	13.5	14.2	13.6	15.5	15.3	15.3	15.3	15.3	17.1	15.3	15.3
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Mean Depth (ft)	1.1	1.2	1.2	1.1	1.1	1.3	0.9	0.9	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.6	1.5	1.4	1.2	1.1	1.5	1.1	1.1
Bankfull Max Depth (ft)	2.1	1.9	1.9	1.8	1.8	2.1	1.9	1.9	1.7	1.8	1.7	1.7	1.7	1.8	1.8	1.8	1.7	1.7	1.7	2.1	2.1	2.1	2.0	2.0	2.8	2.7	2.6	2.1	2.0	2.6	2.1	2.0
Bankfull Cross Sectional Area (ft ²)	17.3	14.5	14.3	13.5	13.3	17.3	13.4	13.3	13.2	12.0	12.3	11.5	11.3	13.2	14.0	13.8	13.9	12.5	12.7	13.2	13.4	13.9	14.1	13.4	25.0	22.4	21.0	18.8	16.6	25.0	17.5	17.2
Bankfull Width/Depth Ratio	14.0	10.6	10.7	11.4	11.4	10.1	17.3	15.8	13.6	13.2	13.0	13.4	13.5	14.3	15.3	14.3	13.4	12.5	12.6	12.2	13.8	13.1	14.3	13.8	9.5	10.5	11.2	12.4	14.1	11.8	13.5	13.6
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>22.3	>23.9	>23.6	>24.1	>24.3	>21.8	>20.5	>21.4	>21.9	>24.0	>23.6	>23.7	>22.1	>22.2	>21.1	>22.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	1.0	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cross	-Section	n 19 (SI	nallow)					Cross	Section	n 20 (Sh	nallow)					Cros	s Section	on 21 (F	Pool)										
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7								
Bankfull Elevation (ft)	112.7	112.7	112.7	112.7	112.7	112.9	112.8	112.7	109.0	109.0	109.0	109.0	109.0	108.9	109.0	109.0	108.1	108.1	108.1	108.1	108.1	108.3	108.1	108.1	1							
Low Bank Elevation (ft)	112.7	112.7	112.7	112.7	112.7	112.8	112.8	112.7	109.0	109.0	109.0	109.0	109.0	109.2	109.0	109.0	108.1	108.1	108.1	108.1	108.1	108.2	108.1	108.1	1							
Bankfull Width (ft)	13.3	14.3	14.2	12.6	14.0	14.1	13.9	14.1	8.2	7.9	7.9	8.3	8.2	8.1	7.7	8.5	8.8	8.9	9.1	7.8	7.8	9.0	8.2	8.3	1							
Floodprone Width (ft)	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1							
Bankfull Mean Depth (ft)			0.8	0.8	0.7	0.9	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.7	0.8	0.9	1.2	1.1	1.3	1.2	1.4	1.2	1.1	1.1	1							
Donkfull May Donth (ft)	1.6	1.6	1.0	1.0	1.4	17	1 [1.0	1.1	1.1	1.2	1.7	1.2	1.2	1.2	1 [2.0	1.0	2.1	2.1	2.0	2.0	17	17	1							

Entrenchment Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum

1.6

1.0 1.0

1.6 1.6 1.6

>22.6 | >20.9 | >21.1 | >23.8 | >21.5

1.0 1.0

12.5 11.2 11.9 9.9

1.4 1.7

9.6

1.0

1.5 1.6

12.5 9.2 9.4 5.7

>21.3 >21.6 >21.3 >36.5

<1.0 <1.0 <1.0

Bankfull Width/Depth Ratio 14.1 18.4 17.1 16.1 20.4 15.9 20.8 21.1 11.9 10.6 10.3 10.9 10.6 11.4 9.4 9.6

1.1

1.0

1.1 1.2 1.2

5.9 6.1 6.3

>37.8 >37.8 >36.3

1.0 1.0

1.2

6.3

>36.6

1.0 1.0 1.2 1.3 1.5

5.7 6.3 7.5

>37.2 >39.1 >35.3

1.1 1.2

1.2

2.0

10.8

7.3

N/A

N/A

1.9 2.1 2.1 2.0 2.0 1.7 1.7

9.7 | 11.5 | 9.4 | 10.6 | 10.8 | 8.8 | 9.1

N/A

7.7 7.5

N/A N/A

N/A N/A

8.1 7.2 6.5 5.7 7.6

N/A N/A N/A N/A

N/A N/A N/A N/A

Bankfull Mean Depth (ft) Bankfull Max Depth (ft)

Entrenchment Ratio¹

Bankfull Bank Height Ratio²

Bankfull Cross Sectional Area (ft²)

²Bank Height Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

Table 11c. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Monitoring Year 7 - 2020

Southeast Branch

			Cro	ss Sectio	on 28 (F	ool)					Cross	Section	29 (Sha	allow)					Cros	ss Sectio	on 30 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	137.7	137.7	137.7	137.7	137.7	137.7	137.8	137.7	137.1	137.1	137.1	137.1	137.1	137.2	137.3	137.3	122.8	122.8	122.8	122.8	122.8	123.0	123.0	123.0
Low Bank Elevation (ft)	137.7	137.7	137.7	137.7	137.7	137.8	137.8	137.7	137.1	137.1	137.1	137.1	137.1	137.2	137.3	137.3	122.8	122.8	122.8	122.8	122.8	123.0	123.0	123.0
Bankfull Width (ft)	3.8	3.3	3.3	3.2	3.3	3.6	3.4	3.2	3.0	2.9	2.6	2.8	2.4	2.6	2.9	3.1	3.8	4.1	3.5	3.5	3.0	4.1	3.9	4.0
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>30	>30	>30	>30	>30	>30	>30	>30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Mean Depth (ft)	0.4	0.5	0.5	0.5	0.4	0.4	0.5	0.5	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.2	0.3	0.3	0.3
Bankfull Max Depth (ft)	0.8	1.2	1.2	1.1	1.1	1.1	1.2	1.1	0.5	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.4	0.7	0.5	0.4	0.4	0.5	0.5	0.6
Bankfull Cross Sectional Area (ft ²)	1.5	1.7	1.6	1.5	1.5	1.5	1.7	1.5	0.8	1.1	0.8	0.9	0.7	0.8	0.9	0.9	1.3	1.7	1.1	0.9	0.7	1.3	1.3	1.4
Bankfull Width/Depth Ratio	9.3	6.6	7.1	7.2	7.3	8.8	6.7	6.7	11.4	7.7	8.3	8.2	7.9	8.6	9.0	10.2	11.2	9.4	11.7	13.5	12.7	12.9	11.5	11.5
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>9.9	>10.4	>11.4	>10.9	>12.5	>11.5	>10.4	>9.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.1	1.1	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cross	Section	31 (Sh	allow)					Cross	Section	32 (Sha	allow)					Cros	ss Sectio	on 33 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	122.7	122.7	122.7	122.7	122.7	122.9	122.9	122.8	116.5	116.5	116.5	116.5	116.5	116.8	116.8	116.8	116.4	116.4	116.4	116.4	116.4	116.7	116.6	116.6
Low Bank Elevation (ft)	122.7	122.7	122.7	122.7	122.7	122.8	122.9	122.8	116.5	116.5	116.5	116.5	116.5	116.6	116.8	116.8	116.4	116.4	116.4	116.4	116.4	116.5	116.6	116.6
Bankfull Width (ft)	3.8	3.9	3.8	2.7	2.4	3.6	3.5	3.9	5.3	5.1	3.9	3.5	3.5	8.5	4.6	5.0	6.3	5.8	5.0	3.6	3.7	4.9	5.1	4.8
Floodprone Width (ft)	>60	>60	>60	>60	>60	>60	>60	>60	>200	>200	>200	>200	>200	>200	>200	>200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Mean Depth (ft)	0.4	0.5	0.3	0.3	0.3	0.4	0.4	0.3	0.4	0.4	0.3	0.3	0.3	0.2	0.4	0.3	0.4	0.3	0.4	0.3	0.3	0.5	0.3	0.3
Bankfull Max Depth (ft)	0.5	0.8	0.5	0.6	0.5	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.7	0.6	0.6	0.8	0.6	0.6	0.5	0.4	0.7	0.6	0.6
Bankfull Cross Sectional Area (ft ²)	1.3	2.0	1.3	0.9	0.7	1.3	1.4	1.2	2.1	1.8	1.2	1.0	0.9	2.1	1.6	1.7	2.4	1.7	1.8	1.1	0.9	2.4	1.6	1.6
Bankfull Width/Depth Ratio	10.8	7.8	11.2	8.3	7.9	10.0	8.9	13.4	13.8	14.6	13.0	12.5	13.7	34.4	12.9	14.5	16.8	19.7	13.7	11.6	14.7	10.0	16.2	14.2
Entrenchment Ratio ¹	>15.8	>15.4	>15.8	>22.4	>24.9	>16.7	>17.2	>15.2	>37.5	>38.9	>51.3	>57.9	>56.4	>23.5	>43.5	>40.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Bank Height Ratio ²		1.0	1.0																					N/A

¹Entrenchment Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

²Bank Height Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

Table 11d. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Monitoring Year 7 - 2020

Middle Branch

Wildele Brailer																								
			Cross	Section	24 (Sh	allow)					Cro	s Section	on 25 (F	Pool)					Cro	ss Secti	on 26 (F	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.6	136.7	136.7	136.4	136.4	136.4	136.4	136.4	136.4	136.5	136.5	124.7	124.7	124.7	124.7	124.7	124.7	124.8	124.8
Low Bank Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.5	136.7	136.7	136.4	136.4	136.4	136.4	136.4	136.4	136.5	136.5	124.7	124.7	124.7	124.7	124.7	124.8	124.8	124.8
Bankfull Width (ft)	2.2	2.3	2.2	1.3	1.2	1.6	2.1	3.1	3.1	3.1	3.2	3.0	2.7	2.5	2.3	2.6	4.1	4.8	5.0	5.2	4.4	5.0	4.2	4.1
Floodprone Width (ft)	>50	>50	>50	>50	>50	>50	>50	>50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Mean Depth (ft)	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.2	0.4	0.5	0.3	0.4	0.5	0.5	0.8	0.6	0.3	0.2	0.2	0.3	0.2	0.3	0.3	0.3
Bankfull Max Depth (ft)	0.5	0.6	0.6	0.4	0.5	0.6	0.7	0.4	0.7	0.9	0.6	0.8	0.8	0.8	1.1	1.1	0.9	0.5	0.5	0.6	0.5	0.6	0.6	0.6
Bankfull Cross Sectional Area (ft ²)	0.7	0.8	0.7	0.4	0.4	0.7	0.8	0.7	1.2	1.6	1.1	1.2	1.2	1.2	1.8	1.4	1.4	1.0	1.0	1.5	1.0	1.4	1.3	1.4
Bankfull Width/Depth Ratio	6.7	6.8	6.8	4.0	3.5	3.7	5.4	13.1	8.1	6.0	9.1	7.6	5.8	5.1	2.9	4.6	11.9	21.9	24.3	17.7	19.7	17.6	13.8	12.0
Entrenchment Ratio ¹	>22.9	>21.5	>23.2	>38.4	>42.9	>31.3	>23.8	>16.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	<1.0	1.1	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cross	Section	1 27 (Sh	allow)																		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7																
Bankfull Elevation (ft)	124.6	124.6	124.6	124.6	124.6	124.7	124.8	124.8																
Low Bank Elevation (ft)	124.6	124.6	124.6	124.6	124.6	124.6	124.8	124.8																
Bankfull Width (ft)	3.4	3.2	3.1	3.5	2.9	3.3	3.3	3.3																
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200	>200																

0.3

0.5 0.6

1.1 1.0 1.0

10.1 10.7

>58.8 >62.5

0.3 0.3

0.6 0.7

10.2

>64.3

0.4 0.3

1.3 0.9

9.5

>57.5

1.0

0.6

8.7

>69.8

1.0

0.3 0.4

>60.6 >61.3

<1.0 1.1

0.6 0.7 0.8

1.1 1.3

9.9 8.1 7.2

0.5

1.5

>61.0

Bankfull Mean Depth (ft)

Bankfull Max Depth (ft)

Entrenchment Ratio¹

Bankfull Width/Depth Ratio

Bankfull Cross Sectional Area (ft²

Bankfull Bank Height Ratio² 1.0 1.0 1.0 ¹Entrenchment Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

 $^{^2}$ Bank Height Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

Table 11e. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Monitoring Year 7 - 2020

Southwest Branch

			Cros	s Sectio	on 22 (P	ool)					Cross	Section	23 (Sh	allow)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.3	136.4	136.5	136.4	136.4	136.4	136.4	136.4	136.5	136.7	136.8
Low Bank Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.4	136.4	136.5	136.4	136.4	136.4	136.4	136.4	136.6	136.7	136.8
Bankfull Width (ft)	4.9	4.8	5.0	4.5	4.2	4.2	3.6	3.7	2.4	2.9	3.0	2.5	1.8	2.0	3.5	3.7
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>200	>200	>200	>200	>200	>200	>200	>200
Bankfull Mean Depth (ft)	0.4	0.4	0.4	0.3	0.3	0.4	0.5	0.4	0.3	0.3	0.3	0.3	0.2	0.3	0.4	0.4
Bankfull Max Depth (ft)	0.8	1.0	0.9	0.7	0.6	0.7	0.7	0.6	0.4	0.4	0.5	0.4	0.3	0.4	0.6	0.7
Bankfull Cross Sectional Area (ft ²)	1.8	1.9	2.1	1.5	1.3	1.8	1.7	1.6	0.6	0.8	0.9	0.7	0.3	0.6	1.3	1.3
Bankfull Width/Depth Ratio	13.2	11.9	11.7	13.7	13.2	9.6	7.3	8.8	9.7	11.2	10.1	8.9	12.0	6.8	9.8	10.3
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>82.3	>68.6	>67.5	>79.4	>108.7	>98.8	>57.1	>54.1
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.3	1.5	1.5

¹Entrenchment Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

 $^{^2} Bank\ Height\ Ratio\ is\ calculated\ using\ the\ method\ specified\ in\ the\ Industry\ Technical\ Workgroup\ Memorandum.$

Table 11f. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Monitoring Year 7 - 2020

North Branch

		Cro	ss Sectio	on 34 (P	ool)					Cross	Section	1 35 (Sh	allow)					Cross	Section	36 (Sh	allow)		
Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
118.6	118.6	118.6	118.6	118.6	118.7	118.7	118.7	118.7	118.7	118.7	118.7	118.7	118.8	118.7	118.7	116.8	116.8	116.8	116.8	116.8	116.7	116.7	116.7
118.6	118.6	118.6	118.6	118.6	118.7	118.7	118.7	118.7	118.7	118.7	118.7	118.7	118.7	188.7	118.7	116.8	116.8	116.8	116.8	116.8	116.7	116.7	116.7
9.8	10.0	10.2	9.7	9.5	10.1	10.0	10.1	8.6	9.2	9.2	9.2	8.9	9.6	8.7	8.3	9.3	9.0	9.0	9.0	9.0	9.0	9.0	8.8
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200
0.8	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.7	0.8	0.8	0.8	0.7	0.7	0.7	0.7
1.3	1.4	1.4	1.3	1.4	1.4	1.3	1.3	1.0	1.2	1.2	1.1	1.1	1.2	1.1	1.2	1.2	1.4	1.4	1.4	1.3	1.3	1.3	1.3
7.5	7.2	7.5	6.7	6.9	7.5	6.5	7.0	5.7	6.0	6.4	5.4	5.1	5.7	5.0	4.9	6.5	7.0	6.9	6.9	6.7	6.5	6.6	6.3
12.8	14.0	13.9	14.0	12.9	13.5	15.3	14.4	13.1	14.1	13.2	15.6	15.4	16.3	15.3	14.0	13.2	11.5	11.7	11.8	12.0	12.5	12.3	12.2
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>23.2	>21.7	>21.7	>21.7	>22.5	>20.8	>22.9	>24.1	>21.6	>22.2	>22.2	>22.2	>22.2	>22.2	>22.2	>22.7
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		Cro	ss Sectio	on 37 (P	ool)																		
Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7																
116.5	116.5	116.5	116.5	116.5	116.6	116.5	116.5																
116.5	116.5	116.5	116.5	116.5	116.6	116.5	116.5																
10.6	11.1	10.7	11.1	11.7	11.6	11.8	12.2]															
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A]															
0.9	0.8	0.9	0.8	0.8	0.8	0.7	0.7]															
	118.6 9.8 N/A 0.8 1.3 7.5 12.8 N/A N/A Base 116.5 116.5 10.6 N/A	118.6 118.6 118.6 118.6 9.8 10.0 N/A N/A N/A 1.3 1.4 7.5 7.2 12.8 14.0 N/A N/A N/A N/A N/A 116.5 116.5 116.5 116.5 116.5 116.6 11.1 N/A N/A N/A N/A N/A	Base MY1 MY2 118.6 118.6 118.6 118.6 118.6 118.6 9.8 10.0 10.2 N/A N/A N/A 0.8 0.7 0.7 1.3 1.4 1.4 7.5 7.2 7.5 12.8 14.0 13.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 116.5 116.5 116.5 11.6 116.5 116.5 10.6 11.1 10.7 N/A N/A N/A	Base MY1 MY2 MY3 118.6 118.6 118.6 118.6 9.8 10.0 10.2 9.7 N/A N/A N/A N/A 0.8 0.7 0.7 0.7 1.3 1.4 1.4 1.3 7.5 7.2 7.5 6.7 12.8 14.0 13.9 14.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 116.5 116.5 116.5 116.5 10.6 11.1 10.7 11.1 N/A N/A N/A N/A	Base MY1 MY2 MY3 MY4 118.6 118.6 118.6 118.6 118.6 118.6 9.8 10.0 10.2 9.7 9.5 N/A N/A N/A N/A N/A 0.8 0.7 0.7 0.7 0.7 1.3 1.4 1.4 1.3 1.4 7.5 7.2 7.5 6.7 6.9 12.8 14.0 13.9 14.0 12.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Toss Section 37 (F 6.9 6.9 6.9 6.9 Base MY1 MY2 MY3 MY4 116.5 116.5 116.5 116.5 116.5 116.5 10.6 11.1 10.7 11.1 11.7 N/A N/A N/A N/A N/A	118.6 118.6 118.6 118.6 118.7 118.6 118.6 118.6 118.6 118.7 9.8 10.0 10.2 9.7 9.5 10.1 N/A N/A N/A N/A N/A N/A 0.8 0.7 0.7 0.7 0.7 0.7 1.3 1.4 1.4 1.3 1.4 1.4 7.5 7.2 7.5 6.7 6.9 7.5 12.8 14.0 13.9 14.0 12.9 13.5 N/A N/A N/A N/A N/A 116.5 116.5 116.5 116.5 116.6 116.6 11.1 10.7 11.1 11.7 11.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Base MY1 MY2 MY3 MY4 MY5 MY6 118.6 118.6 118.6 118.6 118.6 118.7 118.7 9.8 10.0 10.2 9.7 9.5 10.1 10.0 N/A N/A N/A N/A N/A N/A N/A 0.8 0.7 0.7 0.7 0.7 0.7 0.6 1.3 1.4 1.4 1.3 1.4 1.4 1.3 7.5 7.2 7.5 6.7 6.9 7.5 6.5 12.8 14.0 13.9 14.0 12.9 13.5 15.3 N/A N/A N/A N/A N/A N/A N/A 116.5	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 118.6 118.6 118.6 118.6 118.7	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base 118.6 118.6 118.6 118.6 118.7	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 118.6 118.6 118.6 118.6 118.6 118.7 <t< td=""><td> Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 </td><td> Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 </td><td> Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 118.6 118.6 118.6 118.6 118.6 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.6 118.6 118.6 118.6 118.6 118.7 118.7 118.7 118.7 118.7 118.7 9.8 10.0 10.2 9.7 9.5 10.1 10.0 10.1 8.6 9.2 9.2 9.2 8.9 N/A N/A</td><td> My1</td><td> My1</td><td> Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 </td><td> Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY5 MY6 MY7 MY6 MY6 MY7 MY6 MY6 MY7 MY6 MY6 MY6 MY7 MY6 MY6 MY7 MY6 MY6 MY6 MY6 MY7 MY6 MY6 </td><td> Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 </td><td> Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 </td><td> My</td><td> Mary My2 My3 My4 My5 My6 My7 My6 My7 My8 My7 My8 My1 My2 My3 My4 My5 My6 My7 My8 My8</td><td> My</td><td> My</td></t<>	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 118.6 118.6 118.6 118.6 118.6 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.6 118.6 118.6 118.6 118.6 118.7 118.7 118.7 118.7 118.7 118.7 9.8 10.0 10.2 9.7 9.5 10.1 10.0 10.1 8.6 9.2 9.2 9.2 8.9 N/A N/A	My1	My1	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY5 MY6 MY7 MY6 MY6 MY7 MY6 MY6 MY7 MY6 MY6 MY6 MY7 MY6 MY6 MY7 MY6 MY6 MY6 MY6 MY7 MY6 MY6	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1	Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2 MY3 MY4 MY5 MY6 MY7 Base MY1 MY2	My	Mary My2 My3 My4 My5 My6 My7 My6 My7 My8 My7 My8 My1 My2 My3 My4 My5 My6 My7 My8 My8	My	My

Bankfull Width/Depth Ratio 12.3 13.4 12.5 13.8

N/A

1.4 1.4 1.5

N/A

N/A N/A

1.4

9.2 9.2 9.2 8.9 8.9 9.2 8.5

N/A

1.4 1.4 1.3

N/A N/A N/A

15.4 14.7 16.3 18.4

N/A N/A N/A

1.4

8.1

Bankfull Max Depth (ft)

Entrenchment Ratio¹

Bankfull Cross Sectional Area (ft²)

²Bank Height Ratio is calculated using the method specified in the Industry Technical Workgroup Memorandum.

Table 12a. Monitoring Data - Stream Reach Data Summary

Monitoring Year 7 - 2020

Devil's Racetrack (West)

Parameter	As-Built	/Baseline	M	Y1	M	Y2	IV	1Y3	IV	IY4	M	Y5	IV	1Y6	IV	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow		•						•						•		•
Bankfull Width (ft)	4.7	9.6	4.8	10.0	4.8	10.0	4.2	10.0	4.2	9.3	2.8	10.0	4.7	9.0	3.9	9.7
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200
Bankfull Mean Depth	0.4	0.9	0.7	0.8	0.6	1.2	0.6	0.8	0.5	1.0	0.5	0.8	0.5	0.9	0.4	1.0
Bankfull Max Depth	0.7	1.4	1.0	1.5	1.0	1.7	1.1	1.4	1.0	1.7	0.9	1.5	1.0	1.5	0.8	1.5
Bankfull Cross Sectional Area (ft ²)	2.1	8.5	3.3	8.1	4.9	8.2	3.3	7.4	4.3	7.1	2.1	8.5	4.0	6.2	3.8	5.8
Width/Depth Ratio	10.6	14.8	6.9	12.6	4.0	13.4	4.7	14.0	4.0	14.7	3.7	15.5	5.5	18.7	4.0	19.8
Entrenchment Ratio	>20.9	>42.5	>20	>42.1	>20.1	>41.9	>20.0	>47.4	>21.5	>47.4	>20.0	>71.9	>22.1	>42.3	>20.5	>51.7
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	2.0	<1.0	1.5	<1.0	1.6
D50 (mm)																
Profile		•						•								
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern		•		•						•						•
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters		•						•								•
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			C	%	0	1%	C)%	C)%	0	%	()%	()%

^{*}Baseline, MY1, and MY2 data was updated during MY3 to include only shallow data.

Table 12b. Monitoring Data - Stream Reach Data Summary

Monitoring Year 7 - 2020

Devil's Racetrack (East)

Parameter Parameter	As-Built/Baseline		M	Y1	M	Y2	M	1Y3	IV	IY4	MY5		MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow				•		•		•		•				•		
Bankfull Width (ft)	8.2	13.7	7.9	14.3	7.9	14.2	8.3	12.7	8.2	14.0	8.1	14.1	7.7	14.6	8.5	14.1
Floodprone Width (ft)	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300
Bankfull Mean Depth	0.7	1.1	0.7	1.0	0.8	1.0	0.7	1.0	0.7	1.0	0.7	1.1	0.7	1.1	0.6	1.0
Bankfull Max Depth	1.1	1.7	1.1	1.8	1.2	1.7	1.2	2.1	1.2	2.1	1.2	2.1	1.3	2.0	1.3	2.0
Bankfull Cross Sectional Area (ft ²)	5.7	14.1	5.9	12.5	6.1	12.7	6.3	13.2	6.3	13.4	5.7	13.9	6.3	14.1	7.5	13.8
Width/Depth Ratio	11.9	14.6	10.6	18.4	10.3	17.1	10.9	18.6	10.6	20.4	11.4	15.9	9.4	18.8	9.6	21.1
Entrenchment Ratio	>21.9	>36.5	>20.9	>37.8	>21.1	>37.8	>23.7	>36.3	>21.5	>36.6	>21.3	>37.2	>20.5	>39.1	>21.3	>35.3
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	1.2	<1.0	1.0	<1.0	1.2
D50 (mm)																
Profile		•						•								
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern		•				•		•		•						•
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters		•		•						•						•
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			C	%	0	1%	0)%	C)%	0	1%	()%	()%

^{*}Baseline, MY1, and MY2 data was updated during MY3 to include only shallow data.

Table 12c. Monitoring Data - Stream Reach Data Summary

Monitoring Year 7 - 2020

Southeast Branch

Parameter	As-Built	/Baseline	M	Y1	M	Y2	M	Y3	IV	1Y4	M	IY5	MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow																
Bankfull Width (ft)	3.0	5.3	2.9	5.1	2.6	3.9	2.7	3.5	2.4	3.5	2.6	8.5	2.9	4.6	3.1	5.0
Floodprone Width (ft)	>30	>200	>30	>200	>30	>200	>30	>200	>30	>200	>30	>200	>30	>200	>30	>200
Bankfull Mean Depth	0.3	0.4	0.4	0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.4	0.3	0.4	0.3	0.3
Bankfull Max Depth	0.5	0.6	0.5	0.8	0.5	0.7	0.5	0.7	0.4	0.7	0.7	0.7	0.6	0.7	0.6	0.8
Bankfull Cross Sectional Area (ft ²)	0.8	2.1	1.1	2.0	0.8	1.3	0.9	1.0	0.7	0.9	0.8	2.1	0.9	1.6	0.9	1.7
Width/Depth Ratio	10.8	13.8	7.7	14.6	8.3	13.0	8.2	12.5	7.9	13.7	8.6	34.4	8.9	12.9	10.2	14.5
Entrenchment Ratio	>9.9	>37.5	>10.4	>38.9	>11.4	>51.3	>10.9	>57.9	>12.5	>56.4	>11.5	>23.5	>17.2	>43.5	>9.8	>40.3
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	1.1	<1.0	1.1	<1.0	1.0
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern		•		•						•						
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters				•		•		•								
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			10	0%	0	1%	0	1%	C)%	C	1%	()%	(0%

^{*}Baseline, MY1, and MY2 data was updated during MY3 to include only shallow data.

Table 12d. Monitoring Data - Stream Reach Data Summary

Monitoring Year 7 - 2020

Middle Branch

Parameter	As-Built/Baseline		MY1		MY2		MY3		MY4		MY5		MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow																
Bankfull Width (ft)	2.2	3.4	2.3	3.2	2.2	3.1	1.3	3.5	1.2	2.9	1.6	3.3	2.1	3.1	3.1	3.3
Floodprone Width (ft)	>50	>200	>50	>200	>50	>200	>50	>200	>50	>200	>50	>200	>50	>200	>50	>200
Bankfull Mean Depth	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.2	0.5
Bankfull Max Depth	0.5	0.5	0.6	0.6	0.6	0.6	0.4	0.7	0.5	0.6	0.6	0.6	0.7	0.7	0.4	0.8
Bankfull Cross Sectional Area (ft ²)	0.7	1.1	0.8	1.0	0.7	1.0	0.4	1.3	0.4	0.9	0.7	1.1	0.8	1.3	0.7	1.5
Width/Depth Ratio	6.7	10.1	6.8	10.7	6.8	10.2	4.0	9.5	3.5	8.7	3.7	9.9	5.4	8.1	7.2	13.1
Entrenchment Ratio	>22.9	>58.8	>21.5	>62.5	>23.2	>64.3	>38.4	>57.5	>42.9	>69.8	>31.3	>60.6	>23.8	>61.3	>16.1	>61.0
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	1.1	1.1	1.0	1.2
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters																
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			0	1%	(0%	C)%	0	1%	C)%	C	1%	C	1%

^{*}Baseline, MY1, and MY2 data was updated during MY3 to include only shallow data.

Table 12e. Monitoring Data - Stream Reach Data Summary

Monitoring Year 7 - 2020

Southwest Branch

Parameter	As-Built/Baseline	MY1	MY2	MY3	MY4	MY5	MY6	MY7	
	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	
Dimension and Substrate - Shallow									
Bankfull Width (ft)	2.4	2.9	3.0	2.5	1.8	2.0	3.5	3.7	
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200	>200	
Bankfull Mean Depth	0.3	0.3	0.3	0.3	0.2	0.3	0.4	0.4	
Bankfull Max Depth	0.4	0.4	0.5	0.4	0.3	0.4	0.6	0.7	
Bankfull Cross Sectional Area (ft ²)	0.6	0.8	0.9	0.7	0.3	0.6	1.3	1.3	
Width/Depth Ratio	9.7	11.2	10.1	8.9	12.0	6.8	9.8	10.3	
Entrenchment Ratio	>82.3	>68.6	>67.5	>79.4	>108.7	>98.8	>57.1	>54.1	
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.3	1.5	1.5	
D50 (mm)									
Profile									
Shallow Length (ft)									
Shallow Slope (ft/ft)									
Pool Length (ft)									
Pool Max Depth (ft)									
Pool Spacing (ft)									
Pool Volume (ft ³)									
Pattern									
Channel Beltwidth (ft)									
Radius of Curvature (ft)									
Rc:Bankfull Width (ft/ft)									
Meander Wave Length (ft)									
Meander Width Ratio									
Additional Reach Parameters									
Rosgen Classification									
Channel Thalweg Length (ft)									
Sinuosity (ft)									
Water Surface Slope (ft/ft)									
Bankfull Slope (ft/ft)									
Ri%/Ru%/P%/G%/S%									
SC%/Sa%/G%/C%/B%/Be%									
d16/d35/d50/d84/d95/d100									
% of Reach with Eroding Banks		0%	0%	0%	0%	0%	0%	0%	

^{*}Baseline, MY1, and MY2 data was updated during MY3 to include only shallow data.

Table 12f. Monitoring Data - Stream Reach Data Summary

Monitoring Year 7 - 2020

North Branch

Parameter	As-Built/Baseline		MY1		M	Y2	MY3		MY4		MY5		MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow																
Bankfull Width (ft)	8.6	9.3	9.0	9.2	9.0	9.2	9.0	9.2	8.9	9.0	9.0	9.6	8.7	9.0	8.3	8.8
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200
Bankfull Mean Depth	0.7	0.7	0.7	0.8	0.7	0.8	0.6	0.8	0.6	0.7	0.6	0.7	0.6	0.7	0.6	0.7
Bankfull Max Depth	1.0	1.2	1.2	1.4	1.2	1.4	1.1	1.4	1.1	1.3	1.2	1.3	1.1	1.3	1.2	1.3
Bankfull Cross Sectional Area (ft ²)	5.7	6.5	6.0	7.0	6.4	6.9	5.4	6.9	5.1	6.7	5.7	6.5	5.0	6.6	4.9	6.3
Width/Depth Ratio	13.1	13.2	11.5	14.1	11.7	13.2	11.8	15.6	12.0	15.4	12.5	16.3	12.3	15.3	12.2	14.0
Entrenchment Ratio	>21.6	>23.2	>21.7	>22.2	>21.7	>22.2	>21.7	>22.2	>22.2	>22.5	>20.8	>22.2	>22.2	>22.9	>22.7	>24.1
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	1.0	<1.0	1.0
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters																
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			0	%	C	%	0)%	0	%	0)%	C	%)%

^{*}Baseline, MY1, and MY2 data was updated during MY3 to include only shallow data.

Devil's Racetrack Mitigtion Site (DMS Project No. 95021)

Table 13. Verification of Bankfull Events

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 7 - 2020

	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Reach		Date of	Date of	Date of	Date of	Date of	Date of
	Date of Occurrence	Occurrence	Occurrence	Occurrence	Occurrence	Occurrence	Occurrence
		3/5/2015 6/3/2015	2/4/2016 4/13/2016 4/23/2016 10/8/2016		1/3/2018	1/4/2019	1/5/2020
					1/29/2018	2/13/2019	1/13/2020
					3/20/2018	3/3/2019	2/7/2020
Devil's Racetrach (West)	3/28/2014 - 4/1/2014			3/14/2017 4/25/2017 5/24/2017 6/15/2017	4/24/2018	4/13/2019	3/25/2020
	4/29/2014 - 5/1/2014				5/29/2018	5/4/2019	4/30/2020
bein's nacetraen (vvest)	6/9/2014 - 6/20/2014				8/21/2018	6/10/2019	5/22/2020
	9/7/2014 - 9/9/2014				9/15/2018	7/12/2019	6/12/2020
					10/11/2018	9/6/2019	6/17/2020
					11/13/2018	10/23/2019	6/21/2020
					11/24/2018	11/24/2019	8/4/2020
		6/3/2015	2/4/2016 6/3/2016 10/8/2016	3/14/2017 4/25/2017 5/24/2017	1/3/2018	1/4/2019	1/13/2020
	3/28/2014 - 4/1/2014 6/9/2014 - 6/20/2014				1/29/2018	2/18/2019	2/7/2020
					3/20/2018	2/23/2019	3/25/2020
					4/24/2018	3/3/2019	4/30/2020
Devil's Racetrach (East)					5/29/2018	4/14/2019	5/22/2020
` '					8/21/2018	4/20/2019	6/12/2020
					9/15/2018	6/10/2019	6/17/2020
					10/11/2018	7/12/2019	6/21/2020
					11/13/2018	9/6/2019	8/4/2020
					11/24/2018	10/20/2019	9/1/2020
	4/29/2014 - 5/1/2014	3/5/2015 6/3/2015 10/2/2015	2/4/2016 10/8/2016	4/25/2017 5/24/2017	1/13/2018	1/4/2019	1/13/2020
Southwest Branch	6/9/2014 - 6/20/2014 9/7/2014 - 9/9/2014				2/12/2018	3/3/2019	2/7/2020
					9/15/2018	7/12/2019	4/30/2020
					11/13/2018	9/6/2019	6/17/2020
	3/28/2014 - 4/1/2014 4/29/2014 - 5/1/2014 6/9/2014 - 6/20/2014 9/7/2014 - 9/9/2014	3/5/2015 6/3/2015	2/4/2016 10/8/2016	4/25/2017 5/24/2017	1/29/2018	1/4/2019	1/13/2020
Middle Branch					4/24/2018	2/18/2019	2/7/2020
Middle Branch					5/29/2018	4/13/2019 7/12/2019	4/30/2020
					9/15/2018 11/13/2018	7/12/2019	6/17/2020 8/4/2020
					1/13/2018	3/3/2019	1/13/2020
	3/28/2014 - 4/1/2014 4/29/2014 - 5/1/2014	1 - 5/1/2014 - 6/20/2014 10/2/2015	2/4/2016 10/8/2016	3/14/2017 4/25/2017	1/29/2018 4/24/2018	4/13/2019	2/7/2020
Southeast Branch					5/29/2018	7/12/2019	4/30/2020
Southoust Brunon	6/9/2014 - 6/20/2014				9/15/2018	8/16/2019	6/17/2020
	9/7/2014 - 9/9/2014				11/13/2018	9/6/2019	8/4/2020
	4/29/2014 - 5/1/2014 6/9/2014 - 6/20/2014 9/7/2014 - 9/9/2014		2/4/2016 10/8/2016	4/25/2017 5/24/2017	1/3/2018	1/4/2019	2/7/2020
					1/29/2018	3/3/2019	3/25/2020
					3/20/2018	4/13/2019	4/30/2020
North Branch					5/29/2018	6/10/2019	5/22/2020
					9/15/2018	7/12/2019	6/17/2020
					11/13/2018	9/6/2019	8/4/2020

Table 14. In-Stream Flow Gage Attainment Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Summary of In-Stream Flow Gage Results for Monitoring Years 1 through 7								
Reach	Max Consecutive Days/ Total Days Meeting Success Criteria							
	Year 1 (2014)	Year 2 (2015)	Year 3 (2016)	Year 4 (2017)	Year 5 (2018)	Year 6 (2019)	Year 7 (2020)**	
Southwest Branch	114 Days/	365 Days/	365 Days/	365 Days/	*132 Days/	365 Days/	330 Days/	
	143 Days	365 Days	365 Days	365 Days	132 Days	365 Days	329 Days	
Middle Branch	102 Days/	365 Days/	365 Days/	*345 Days/	365 Days/	*303 Days/	321 Days/	
	243 Days	365 Days	365 Days	345 Days	365 Days	303 Days	321 Days	
Southeast Branch	86 Days/	*16 Days/	136 Days/	70 Days/	*123 Days/	117 Days/	118 Days/	
	134 Days	24 Days	229 Days	128 Days	216 Days	217 Days	237 Days	

Success criteria is 30 consecutive days of flow.

^{*}A gage malfunction occurred during a portion of the monitoring year **Data collected through November 17, 2020.

Recorded In-Stream Flow Events

Devil's Racetrack Mitigation Site DMS Project No. 95021

Recorded In-Stream Flow Events

Devil's Racetrack Mitigation Site DMS Project No. 95021

Recorded In-Stream Flow Events

Devil's Racetrack Mitigation Site DMS Project No. 95021

	Sumr	Summary of Groundwater Gage Results for Monitoring Years 1 through 7 Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)								
Gage	Year 1 (2014)**	Year 2 (2015)	Year 3 (2016)	Year 4 (2017)	Year 5 (2018)	Year 6 (2019)	Year 7 (2020			
1	No/7.5 Days	No/16 Days	Yes/31 Days	Yes/28 Days	Yes/37 Days	Yes/48 Days	Yes/67 Day			
	(3.1%) No/14.5 Days	(6.0%) Yes/ 58 Days	(11.9%) No/21 Days	(10.8%) No/15 Days	(14.2%) Yes/35 Days	(18.4%) Yes/57 Days	(25.7%) Yes/36 Day			
2	(6.0%)	(22.3%)	(8.1%)	(5.8%)	(13.4%)	(21.8%)	(13.8%)			
3	No/2.5 Days	Yes/33 Days	No/9 Days (3.5%)	No/11 Days	Yes/35 Days	Yes/56 Days	Yes/36 Day			
	(1.0%) No/13.5 Days	(12.8%) Yes/57 Days	Yes/25 Days	(4.2%) Yes/30 Days	(13.4%) Yes/67 Days	(21.5%) Yes/59 Days	(13.8%) Yes/38 Day			
4	(5.6%)	(21.9%)	(9.6%)	(11.5%)	(25.7%)	(22.6%)	(14.6%)			
5	No/12.5 Days	Yes/34 Days	No/18 Days	No/12 Days	Yes/36 Days	Yes/32 Days	Yes/65 Day			
	(5.2%) No/11.0 Days	(13.0%) Yes/53 Days	(6.9%) Yes/23 Days	(4.6%) No/13 Days	(13.8%) No/14 Days	(12.3%) Yes/30 Days	(24.9%) No/18 Day			
6	(4.6%)	(20.3%)	(8.8%)	(5.0%)	(5.4%)	(11.5%)	(6.9%)			
7	Yes/21.5 Days	Yes/66 Days	Yes/25 Days	Yes/23 Days	Yes/51 Days	No/7 Days *	Yes/36 Day			
	(9.0%) No/5.0 Days	(25.6%) Yes/31 Days	(9.6%)	(8.8%) No/10 Days	(19.5%)	(2.7%)	(13.8%)			
8	No/5.0 Days (2.1%)	(12.0%)	No/8 Days (3.1%)	No/10 Days (3.8%)	R	emoved During M\	/ 5			
9	Yes/ 22.0 Days	Yes/80 Days	Yes/ 39.0 Days	Yes/28 Days	Yes/36 Days	Yes/55 Days	Yes/31 Day			
9	(9.2%)	(31.0%)	(15.0%)	(10.8%)	(13.8%)	(21.1%)	(11.9%)			
10	No/ 1.5 Days (0.6%)	No/10 Days (3.9%)	No/ 3 Days (1.2%)	No/3 Days (1.2%)	R	emoved During M\	/4			
	No/9.0 Days	Yes/65 Days	Yes/23 Days	Yes/31 Days	Yes/52 Days	Yes/59 Days	Yes/35 Da			
11	(3.8%)	(25.2%)	(8.8%)	(11.9%)	(19.9%)	(22.6%)	(13.4%)			
12	No/7.5 Days	Yes/31 Days	No/13 Days	Yes/30 Days	Yes/52 Days	Yes/58 Days	Yes/36 Da			
	(3.1%) No/8.0 Days	(12.0%) Yes/34 Days	(5.0%) No/11 Days	(11.5%) No/10 Days	(20.3%) No/14 Days	(22.2%) Yes/31 Days	(13.8%) Yes/35 Da			
13	(3.3%)	(13.0%)	(4.2%)	(3.8%)	(5.4%)	(11.9%)	(13.4%)			
14	No/ 8.5 Days	Yes/32 Days	No/12 Days	No/12 Days	Yes/35 Days	Yes/56 Days	Yes/31 Da			
	(3.5%) No/12.5 Days	(12.4%) Yes/33 Days	(4.6%) No/14 Days	(4.6%) Yes/30 Days	(13.4%) Yes/37 Days	(21.5%) Yes/59 Days	(11.9%) Yes/36 Da			
15	No/12.5 Days (5.2%)	(12.8%)	(5.4%)	Yes/30 Days (11.5%)	(14.2%)	(22.6%)	(13.8%)			
16	No/12.5 Days	Yes/33 Days	Yes/39 Days	Yes/29 Days	Yes/36 Days	Yes/55 Days	Yes/36 Da			
10	(5.2%)	(12.8%)	(15.0%)	(11.2%)	(13.8%)	(21.1%)	(13.8%)			
17	No/15.0 Days (6.3%)	Yes/34 Days (13.2%)	Yes/23 Days (8.8%)	No/16 Days (6.2%)	Yes/37 Days (14.2%)	Yes/56 Days (21.5%)	Yes/35 Da (13.4%)			
10	Yes/69.5 Days	Yes/66 Days	Yes/22 Days	No/14 Days	Yes/36 Days	Yes/59 Days	Yes/34 Da			
18	(29.0%)	(25.6%)	(8.5%)	(5.4%)	(13.8%)	(22.6%)	(13.0%)			
19	Yes/31.5 Days (13.1%)	Yes/66 Days (25.6%)	Yes/26 Days (10.0%)	Yes/30 Days (11.5%)	Yes/37 Days (14.2%)	Yes/59 Days (22.6%)	Yes/37 Da (14.2%)			
	No/19.5 Days	Yes/35 Days	No/12 Days	No/5 Days	No/13 Days	No/0 Days	No/0 Day			
20	(8.1%)	(13.4%)	(4.6%)	(1.9%)	(5.0%)	(0%)	(0%)			
21	Yes/69.5 Days (29.0%)	Yes/79 Days (30.4%)	Yes/38 Days (14.6%)	Yes/31 Days (11.9%)	Yes/37 Days (14.2%)	No/14 Days * (5.4%)	Yes/39 Da (14.9%)			
	Yes/ 31.0 Days	Yes/66 Days	Yes/24 Days	No/16 Days	Yes/37 Days	No/9 Days *	Yes/36 Da			
22	(12.9%)	(25.6%)	(9.2%)	(6.2%)	(14.2%)	(3.4%)	(13.8%)			
23	No/8.0 Days	Yes/31 Days	No/6 Days	No/5 Days	No/5 Days	No/6 Days	No/1 Day			
	(3.3%) No/13.0 Days	(11.8%) Yes/33 Days	(2.3%) No/ 5 Days	(1.9%) No/9 Days	(1.9%) No/12 Days	(2.3%) Yes/23 Days	(0.4%) No/8 Day			
24	(5.4%)	(12.8%)	(1.9%)	(3.5%)	(4.6%)	(8.8%)	(3.1%)			
25	Yes/25.5 Days	Yes/66 Days	Yes/23 Days	No/16 Days	Yes/52 Days	Yes/60 Days	Yes/37 Da			
	(10.6%) Yes/39.0 Days	(25.6%) Yes/83 Days	(8.8%) Yes/25 Days	(6.2%) No/14 Days	(19.9%) No/14 Days	(23.0%) No/19 Days	(14.2%) No/16 Day			
26	(16.3%)	(32.2%)	(9.6%)	(5.4%)	(5.4%)	(7.3%)	(6.1%)			
27	Yes/29.5 Days	Yes/67 Days	Yes/31 Days	Yes/32 Days	Yes/37 Days	Yes/59 Days	Yes/94 Da			
	(12.3%)	(26.0%)	(11.9%)	(12.3%)	(14.2%)	(22.6%)	(36.0%)			
28	No/19.5 Days (8.1%)	Yes/81 Days (31.2%)	Yes/106 Days (40.8%)	Yes/102 Days (39.2%)	Yes/111 Days (42.5%)	Yes/77 Days (29.5%)	Yes/94 Da (36.0%)			
29	Yes/70.0 Days	Yes/81 Days	Yes/56 Days	Yes/78 Days	Yes/76 Days	Yes/63 Days	Yes/48 Da			
23	(29.2%)	(31.4%)	(21.5%)	(30.0%)	(29.1%)	(24.1%)	(18.4%)			
30	Yes/52.5 Days (21.9%)	Yes/83 Days (32.0%)	No/11 Days (4.2%)	No/9 Days (3.5%)	No/22 Days (8.4%)	Yes/31 Days (11.9%)	Yes/37 Da (14.2%)			
2.1	No/9.0 Days	Yes/77 Days	Yes/40 Days	Yes/32 Days	Yes/66 Days	Yes/61 Days	Yes/36 Da			
31	(3.8%)	(29.7%)	(15.4%)	(12.3%)	(25.3%)	(23.4%)	(13.8%)			
32	No/ 7.0 Days (2.9%)	Yes/78 Days (30.2%)	No/11 Days (4.2%)	No/3 Days (1.2%)	R	emoved During M\	1 5			
22	Yes/69.5 Days	(30.2%) Yes/84 Days	Yes/51 Days	Yes/46 Days	Yes/64 Days	Yes/63 Days	Yes/35 Da			
33	(29.0%)	(32.4%)	(19.6%)	(17.7%)	(24.5%)	(24.1%)	(13.4%)			
34	No/2.0 Days	No/16 Days	No/10 Days	No/4 Days	No/9 Days	Removed I	Ouring MY6			
	(0.8%) Added During	(6.0%) Yes/33 Days	(3.8%) Yes/42 Days	(1.5%) Yes/31 Days	(3.4%) Yes/67 Days	Yes/59 Days Yes/38 Day				
35	MY2	(12.8%)	(16.2%)	(11.9%)	(25.7%)	(22.6%)	(14.6%)			
36	Added During	Yes/34 Days	Yes/40 Days	Yes/31 Days	Yes/53 Days	Yes/59 Days	Yes/38 Da			
	MY2 Added During	(13.0%) Yes/33 Days	(15.4%) Yes/22 Days	(11.9%) No/15 Days	(20.3%) Yes/36 Days	(22.6%) Yes/32 Days	(14.6%) Yes/35 Da			
37	MY2	(12.8%)	(8.5%)	No/15 Days (5.8%)	(13.8%)	(12.3%)	(13.4%)			
38	Added During	Yes/33 Days	No/6 Days	No/11 Days	Yes/36 Days	Yes/59 Days	Yes/37 Da			
30	MY2	(12.8%)	(2.3%)	(4.2%)	(13.8%)	(22.6%)	(14.2%)			
39	Added During MY5	Added During MY5	Added During MY5	Added During MY5	Yes/65 Days (24.9%)	Yes/60 Days (23.0%)	Yes/61 Da (23.4%)			
	Added During	Added During	Added During	Added During	Yes/40 Days	Yes/56 Days	Yes/40 Da			
40	Added During									
40	MY5 Added During	MY5 Added During	MY5 Added During	MY5 Added During	(15.3%) Yes/37 Days	(21.5%) Yes/59 Days	(15.3%) Yes/35 Da			

Success criteria is a free groundwater surface within 12 inches of the ground surface for 8.5% of the growing season.

* Groundwater gages 7, 21, & 22 malfunctioned during the spring of 2019 (MY6).

^{**}NRCS WETS data was used to determine the growing season for MY1. After discussions with the US Army Corps of Engineers, on-site soil temperature probe data is being used to determine the beginning of the growing season.

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Devil's Racetrack Mitigation Site DMS Project No. 95021

Soil Temperature Probe Plots

Devils Racetrack Mitigation Site(DMS Project No. 95021)

Soil Temperature Probe Plots

Devils Racetrack Mitigation Site(DMS Project No. 95021)

Soil Temperature Probe Plots

Devils Racetrack Mitigation Site(DMS Project No. 95021)

Monthly Rainfall Data

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

 $^{^{1}}$ 2020 monthly rainfall collected from USDA weather station 317994 (Smithfield, NC).

² 30th and 70th percentile rainfall data collected from weather station 317994, in Smithfield, NC (USDA, 1990 - 2020).

30 Day Cumulative Total Rainfall Data

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

 $^{^{\}mathrm{1}}$ 2020 monthly rainfall collected from weather station 317994 Smithfield, NC.

 $^{^{2}}$ 30th and 70th percentile rainfall data collected from weather station 317994 Smithfield, NC.

Soil & Environmental Consultants, PA

11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone: (919) 846-5900 • Fax: (919) 846-9467 www.SandEC.com

DETAILED HYDRIC SOIL INVESTIGATION

Devil's Racetrack Mitigation Site
Upper Coastal Plain
Neuse River Basin
Johnston County, North Carolina

Prepared for:
Mr. John Hutton
Wildlands
312 West Millbrook Road, Suite 225

March 22nd, 2019

INTRODUCTION

Soil & Environmental Consultants, PA (S&EC, PA) was retained to perform a detailed evaluation to assess the presence and extent of (current, i.e. not relic) hydric soil indicators within specific areas of the mitigation site (See attached S&EC Hydric Soil Study Area Map). The solid pink areas have been identified by the IRT as being "at Risk" and the areas outlined in orange are additional areas that Wildlands requested that we evaluate. There are a number of restored streams that dissect the site. The areas evaluated are within a completed wetland restoration project.

METHODOLOGY

On February 26th and March 14th, 2019 Kevin Martin (LSS, PWS) of S&EC, PA performed a soil evaluation at the site. Pits were dug with a sharp shooter and hand auger borings were advanced on the property at locations as appropriate to approximately estimate the location and extent of hydric soils that exhibited hydric soil indicators typically associated with current conditions within the parts of the project area. Each pit boring was evaluated to assess the presence or absence of hydric soil indicators. Hydric soil indicators were identified utilizing the NRCS Field Indicators of Hydric Soils in the Unities States - A Guide for Identifying and Delineating Hydric Soils (Version 8.2, 2018) and Redoximorphic Features for Identifying Aquic Conditions, North Carolina Agricultural Research Service, NC State University Raleigh, North Carolina, Technical Bulletin 301 August 2015 which states:

- (1)Contemporary redox concentrations (masses, pore linings) should have Hues of (Ferrihydrite) 5YR, (Lepidocrocite) 7.5YR, (Goethite) 7.5YR, 10YR and (Jarosite) 2.5Y. They should not have hues of (Hematite) 10R, 5R, 2.5YR. Such features are associated with ped faces or root channels.
- (2) An α , α' -dipyridyl dye can be used to test for iron reduction. A pink color will appear in a few minutes if ferrous iron is present. This indicates that the horizon from which the sample came is reduced for soil classification purposes.

Oxidized rhizospheres were also used in this study because they are acknowledged as a wetland hydrology indicator.

BACKGROUND

Prior to development of the mitigation site, an evaluation was performed by a NC Licensed Soil Scientist to identify areas containing hydric soils. Upon review of the past soil profile description it was noted that none referred to the presence of redox concentrations such as Fe masses or pore linings in the surface layer (A horizon). Therefore, the presence of such features today would indicate a change to a wetter condition significant enough to form such features within the last 5 years. The main hydric soil indicators originally present appear to have been Depleted Matrix (F3), Depleted Below Dark Surface (A11) and/or Redox Dark surface (F6). We did not consider these indicators in our evaluation since they were present prior to restoration and could be indicative of relic conditions.

RESULTS

Twenty five pits and numerous soil borings were performed within the study area. Soil characteristics were evaluated and all areas identified as containing current hydric soil indicators indicative of aquic conditions were identified. The location of each pit is shown on the attached S&EC Devils Racetrack Mitigation Site Map. Where pits were dug adjacent to monitoring wells, they have a GW label that corresponds to the existing well number. Where pits were dug that were not adjacent to an existing monitoring well they are only represented by a number (e.g. 06). Areas where current hydric soil indicators were not observed are labeled as Potential

Upland Areas on the map and are outlined in blue with yellow hatching . An abbreviated soil profile description for each pit and a photo of most pits appear on the attached Aquic Conditions Table. The heading of each photograph indicates the current hydric soil indicators indicative of aquic conditions, if present, and the reaction of an α , α' -dipyridyl test strips.

Conclusions

All but four areas evaluated appear to have hydric soil indicators that represent current aquic conditions, they are:

- (1) The area around pit 5, 6 and GW34. This area contains hydric soils but did not exhibit pore linings or oxidized rhizospheres near the surface. Also, reaction with α , α '-dipyridyl test strips was weak at best and did not stain the soil ped faces.
- (2) The area around pit 8. It does not contain hydric soils.
- (3) The elongated area south of pit 11. This area contains hydric soils, but based on a review of aerial photos taken during and after construction, compacted soil observed and slightly higher elevation difference when compared to the surrounding area, it is believed that this areas was used as a construction access road. Since areas observed on each side of this long narrow strip are meeting aquic conditions, we believe by bringing the surface elevation down so it is the same as adjacent wet areas, this area can be made to meet aquic conditions.
- (4) The elongated area south of GW20. This area contains hydric soils, but is slightly elevated above adjacent areas that are meeting aquic conditions but the ditch along the eastern property line is likely preventing adequate hydrology that would cause aquic conditions.

These areas are outlined in blue with yellow hatching on the attached S&EC Devils Racetrack Mitigation Site Map.

		<u>Matrix</u>			Redox Concentrations					
Sampling	Depth	Color	%	Color	Type, Location	%	Text.	Reaction to	Comment	Date
Location	(in)						Class	α, α' Dipyridyl		
GW 13	0-6	2.5Y 4/1	95	7.5YR 5/8	On ped faces, Pore Linings,	5	SL	Yes		2/26/2019
					Ox. Rhizospheres					
	6-12+	2.5Y 6/2	60	7.5YR 5/8	Masses, Pore Linings	40	SCL	Yes		
GW 35	0-9	2.5Y 4/1	95	7.5YR 5/8	On ped faces, Pore Linings,	5	SL	Yes		2/26/2019
					Ox. Rhizospheres					
	9-12+	2.5Y 6/2	60	7.5YR 5/8	Masses, Pore Linings	40	Lt. SCL	Yes		
01: No description									F3 2" thick,	2/26/2019
taken									Low Chroma	
									within top6"	

GW13 Bt Positive α , α' -dipyridyl

GW13 Oxidized Rhizospheres

GW13 weak Positive α , α' -dipyridyl Surface and Subsurface

GW13 Weak Positive α , α' -dipyridyl surface

GW35 #2 Positive α , α' -dipyridyl (hard to see due to bright sunlight)

		<u>Matrix</u>		Redox Concentrations						
Sampling Location	Depth (in)	Color	%	Color	Type, Location	%	Text. Class	Reaction to α , α' Dipyridyl	Comment	Date
GW 14	0-7.5	2.5Y 4/1	95	7.5YR 5/8	Pore Linings	5		Weak		2/26/2019
	7.5-12+	2.5Y 6/2	60	7.5YR 5/8	Masses	40		Weak		
02	0-6	2.5Y 4/2	95	7.5YR 4/4	Pore Linings, Ox. Rhizospheres	5	CL	Yes		2/26/2019
	6-12+	10YR 5/1	75	7.5YR 4/6	Pore Linings	25	CL			
03	0-7	10YR 5/2	90	7.5YR 3/4	Masses, Pore Linings, Ox. Rhizospheres	10	SCL	Yes		2/26/2019
	7-12+	2.5Y 4/2	80	5YR 4/6	Masses, Pore Linings	20	CL			
04	0-12+	2.5Y 4/2	80	5YR 4/6	Masses, Pore Linings, Ox. Rhizospheres	20	CL	Yes	Similar to 03 Subsurface	2/26/2019
GW 24	0-7	2.5Y 3/2	98		Masses, Pore Linings, Ox. Rhizospheres, all few to very few	2	SL	Yes	Approx. 100' N of location shown on map	2/26/2019
	7-12+	2.5Y 6/2	60	10YR 8/8	Masses	10	Lt. SCL		•	
				2.5Y 6/3	Masses	30				

GW14 #2 Pore linings, small Masses but no Oxidized Rhizospheres

GW14 Weak Positive $\alpha,\,\alpha'\text{-dipyridyl}$ surface and subsurface

B2 Positive α , α' -dipyridyl

B2 Oxidized Rhizoshperes

B3 Positive α , α' -dipyridyl

B3 Oxidized Rhizoshperes & Pore Linings

B4 Positive α , α' -dipyridyl

GW24 #2 Positive α , α' -dipyridyl

GW24 Positive α , α' -dipyridyl

		<u>Matri</u>	<u>x</u>		Redox Concentrations					
Sampling	Depth	Color	%	Color	Type, Location	%	Text.	Reaction to	Comment	Date
Location	(in)						Class	α, α' Dipyridyl		
GW 34	0-9.5	10YR 4/1	95	7.5YR 4/6	Masses	5	SCL	Weak		2/26/2019
	9.5-12+	2.5Y 6/1	80	7.5YR 4/6		20	SCL			
05	0-6	2.5Y 5/3	100				SCL	Weak, did not stain soil	Fe conc.'s increasing w/ depth	2/26/2019
	6-12+	2.5 4/1	85	5YR 4/4	Masses	15	SCL	Weak, did not stain soil		
06	0-9.5	10YR 4/1	95	7.5YR 4/6	Masses	5	SCL	Weak	Similar to GW 34	2/26/2019
	9.5-12+	2.5Y 6/1	80	7.5YR 4/6		20	SCL			
GW 6	0-12+	2.5Y 4/1	80	5YR 3/4	Masses, few Ox. Rhizospheres	20	SCL	Yes		2/26/2019
GW5	0-12+	2.5Y 4/1	80	5YR 3/4	Masses, few Ox. Rhizospheres, On ped faces	20	SCL	Yes		2/26/2019

GW34 Positive α , α' -dipyridyl

B5 0-6" Positive α , α' -dipyridyl

B5 6-12+" Positive α , α' -dipyridyl

GW6 Positive α , α' -dipyridyl

GW5 pedface soft masses

		Matrix			Redox Concentrations					
Sampling Location	Depth (in)	Color	%	Color	Type, Location	%	Text. Class	Reaction to α , α' Dipyridyl	Comment	Date
GW 26	0-3	10YR 5/2	65	2.5Y 5/3	Masses, Ox. Rhizospheres	30	SCL	Yes		3/14/2019
				7.5YR 4/6	Pore Linings	5				
	3-12+	10YR 4/1	95	2.5YR 4/4	Masses	5	SCL	Yes		
08	0-3	10YR 4/2	100							3/14/2019
	3-12+	2.5Y 6/4	60	7.5YR 5/8	Masses	10	SL			
				2.5Y 5/2	Pore Linings	30	Lt. SCL			
GW 30	0-3	10YR 5/2	65	2.5Y 5/3	Masses, Ox. Rhizospheres	30	SCL	Yes	Same as GW26	3/14/2019
				7.5YR 4/6	Pore Linings	5				
	3-11	10YR 4/1	75	5YR 3/4	Masses	25	SCL			
09	0-5	2.5Y 4/1	70	7.5YR 4/6	On ped faces, Pore Linings, Ox. Rhizospheres	30	SCL	Yes		3/14/2019
	5-13	10YR 5/1	85	7.5YR 4/6	Masses	15				
GW 28	0-3	10YR 5/2	65	2.5Y 5/3	Masses, Ox. Rhizospheres	30	SCL	Yes	Same as GW30	3/14/2019
				7.5YR 4/6	Pore Linings	5				
	3-11	10YR 4/1	75	5YR 3/4	On ped faces, Masses	25	SCL			

GW26 Positive α , α' -dipyridyl

GW30 surface #2 Oxidized rhizospheres and Pore Linings

GW30 surface Positive α , α' -dipyridyl

GW30 subsurface Masses on Ped Faces

B9 surface #2 Pore Linings

B9 surface Positive α , α' -dipyridyl

		Matrix		Redox Concentrations						
Sampling Location	Depth (in)	Color	%	Color	Type, Location	%	Text. Class	Reaction to α , α' Dipyridyl	Comment	Date
GW 23	0-8	2.5Y 3/1	97		Few Pore Linings, Few Ox. Rhizospheres	3	Lt. SCL	Yes		3/14/2019
	8-12+	10YR 6/2	90	10YR 5/8	Masses	10	SCL			
GW 20	0-8	2.5Y 5/2 or 2.5Y5/3	95	7.5YR 4/6	Few pore linings	5	SCL	No		3/14/2019
	8-12+	2.5Y 5/1		7.5YR 4/6	Few Pore Linings, Few Ox. Rhizospheres		SCL	Yes		

GW20 Negative α , $\alpha^{\text{\tiny{1}}}\text{-dipyridyI}$ surface

GW20 subsurface Positive α , α' -dipyridyl

		<u>Matrix</u>		Redox Concentrations						
Sampling Location	Depth (in)	Color	%	Color	Type, Location	%	Text. Class	Reaction to α , α' Dipyridyl	Comment	Date
GW3: No de	escription									2/26/2019
taken. Extr	emely									
compacted	to 3									
inches.										
07: No desc	ription									2/26/2019
taken. Extr	emely									
compacted	to 3									
inches										
GW2: No de	•									2/26/2019
taken. Only	/ non-									
inundated a	area was									
not represe	ntative of									
surrounding	3									
conditions										
10	0-3	2.5Y 4/1	90	7.5YR 4/6	Pore Linings, Ox.	10	SCL	Yes		3/14/2019
					Rhizospheres					
	3-12+	2.5Y 4/1	85	5YR 3/4	On ped face, Pore Linings	15	SCL	Yes		
11	0-6	2.5Y 5/2	98		Very few Pore linings	2	SCL	Yes		3/14/2019
	6-12+	2.5Y 4/1	70	10YR 4/6	Masses	30	SCL	Yes	Compacted	

Near GW2 (Compacted area possibly due to old construction access, not meeting aquic conditions)

B10 subsurface Positive α , α' -dipyridyl

B10 surface #2 Pore Linings and Oxidized rhizospheres

B10 surface Positive α , α' -dipyridyl

B11 no rhizosphers or Pore linings surface

B11 subsurface Positive α , α' -dipyridyl

B11 surface Positive α , α' -dipyridyl

